## Understanding the performance of a prototype of a WLCG data lake for HL-LHC

#### Simone Campana, Xavier Espinal Currul, Maria Girone, Ivan Kadochnikov, Gavin McCance, Jaroslava Schovancová CERN IT



IEEE eScience 2018 Exascale Track, 2018-10-31

## **Motivation**

- HL-LHC storage needs are above the expected technology evolution (15%/yr) and funding (flat)
- We need to optimize HW usage and operational cost





IEEE eScience 2018 Exascale Track, 2018-10-31

## How to reduce cost???

- Many places where we can reduce cost.
  Here we focus on storage which is one of the bigger contributors.
- Reduce HW cost: introduce the concept of Quality of Service (QoS)
  - we store more than we think today!
    - EOS: 2 copies
    - CEPH: 3 copies
    - dCache: Raid-N
- **Reduce Ops cost**: deploy fewer (larger) storage services
- Co-location of data and compute not guaranteed



## **Data and Compute Infrastructures**





CERN

## Data Lake Prototype



- Goal: testbed to test and demonstrate some of the ideas
- Deployed a Distributed Storage prototype, based on EOS
  - distributed storage
  - network links: latency, bandwidth
  - storage media: disk/cache/tape
  - evolving data access protocols: driven by the changes in networks
  - evolving inter-storage communication



## The core metric: event throughput

• Compute side of things ⇒ boils down to the event throughput at the same cost

⇒ Are we able to support the same or even better event throughput at the same cost with the evolving storage configuration?

- Easier said than done!
  - Which events? Which SW? How much I/O? How much memory? ...
  - How to measure job performance? Storage performance?
  - How to benchmark?
  - What to take into account for the storage configuration?
  - Topology of resources? its transparency?
  - (Co-)location of data vs. compute resources?
  - Types of storage media vs. access policies?
  - Direct vs. remote access to data?
  - How to evolve tools to support the core mission



## Measurements

- Methodology, how to measure and benchmark
- What to measure: event throughput
  - I/O rate
  - Stage-in / Stage-out time
  - SW init time
  - Time spent in the event loop
- Production and Analysis workflows
- Core count preferences: MCORE (production) vs. SCORE (analysis)
- Local vs. remote data access



## Benchmark

- Resources: standard storage vs. distributed storage
  - can compare these flavors of resources
  - in different configurations of the distributed storage
    - hot/warm/cold storage
    - $\circ$  caching
    - local vs. remote access
    - data replication policies/striping
    - downtime/recovery of subset of storage resources
  - benchmarking per resources, VM
- $\Rightarrow$  study and benchmark both
  - job performance, and
  - distributed storage performance, at once



# Workflows types - ATLAS

- G4 simulation
  - CPU intensive, not so much RAM demanding, not much I/O intensive
  - ttbar full simul, reference workflow to compare HS06
- Digi+reco
  - some I/O (not that much IOwaits for jobs), RAM-demanding, sensitive to latency
  - Event mixing, digitization, trigger, trigger reconstruction
  - **50 GB in**
- Production derivation
  - More I/O intensive
  - $\circ \quad \text{Skim, slim, } \dots$
  - $\circ$  5 GB in
- Analysis focusing on analysis derivation



# Workflows types - CMS

- Understanding the equivalents
  - G4 simulation: quick
  - Reco takes more time
  - Premixed pile-up
    - CMS pre-mixes min bias ⇒ huge files, less copies. Perhaps lower I/O?
    - ATLAS does not pre-mix min bias  $\Rightarrow$  smaller files, more copies
  - No derivations
  - Analysis
- Production workflows in CMS: leverage the "1-chain" job <a href="https://doi.org/10.1007/s41781-017-0001-9">https://doi.org/10.1007/s41781-017-0001-9</a>
  - Generation Simulation Digitization Reconstruction steps in 1 job, to save data stage-out and stage-in among jobs
    - $\Rightarrow$  very small input and 1 output of the full chain



## Data access modes

- ATLAS: copy to scratch vs. directIO from co-located storage vs. read over WAN
- CMS: remote read

### ATLAS

| storage<br>vs. compute | Data access<br>mode | Standard<br>storage | eulake |
|------------------------|---------------------|---------------------|--------|
| co-located             | copy to scratch     | •                   | •      |
|                        | directIO            | •                   | ~      |
| not<br>co-located      | copy to scratch     | ?                   | •      |
|                        | directIO            | ?                   | ~      |



## **CMS**: investigation of data access modes ongoing

11

Understanding the performance of a prototype of a WLCG data lake for HL-LHC



# Data Lake Prototype in use...

- First, **integrate** it with the Experiment's Distributed Data Management and Workload Management Systems
  - ATLAS
    - ✓ DLP exposed as a storage endpoint to ATLAS DDM (Rucio)
    - ✓ Data can be transferred from any ATLAS site into the DLP end.
    - ✓ Integrated with ATLAS WMS (PanDA)
  - CMS
    - ✓ DPL exposed as a storage endpoint to CMS DDM
    - ✓ Integrated with CMS CRAB3



## Data Lake and HammerCloud

- ✓ We integrated the Data Lake Prototype with HammerCloud
- We can test real workflows and data access patterns of ATLAS and CMS

Initial focus on ATLAS

(Data is copied from storage to WN)

4 test scenarios, stage-in from

- 1. Base: Local access (no data lake)
- 2. A: DLP, data @CERN, WN @CERN
- 3. B: DLP, data NOT @CERN, WN @CERN
- 4. C: DLP, 4+2 stripes, WN @CERN

PoC with a CMS "1-chain job" running.

|         |          |                       | Running Te                                                                                                                        | sts backed by th         | ne WLCG Data L         | .ake                                                                                                  |              |             |                   |              |                |               |
|---------|----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|-------------------------------------------------------------------------------------------------------|--------------|-------------|-------------------|--------------|----------------|---------------|
| State   | ld       | Host                  | Template                                                                                                                          | Start<br>(Europe/Zurich) | End<br>(Europe/Zurich) | Sites                                                                                                 | sı<br>j      | ıbm<br>obs  | run co<br>jobs jo | omp fa       | iil fa<br>bs S | ail 1<br>% je |
| unning  | 20126028 | hammercloud-<br>ai-12 | 1005: P.F.T. mc16 Sim_tf 21.0.16 -<br>WLCG Data Lakes - local data<br>clone.989 EULAKE folder CERN                                | 13/Sep, 11:42            | 14/Sep, 11:03          | CERN-PROD_DATALAKES, CERN-<br>PROD_DATALAKES_MCORE, CERN<br>PROD_DATALAKES_TESTA, 3 more              | -            | 2           | 3 8               | 34 1         | 6 1            | 5             |
| running | 20126030 | hammercloud-<br>ai-12 | 1006: benchmark derivation<br>AthDerivation/21.2.8.0 1k events -<br>WLCG Data Lakes - local data<br>clone.977 EULAKE folder CERN  | 13/Sep, 12:08            | 14/Sep, 12:11          | CERN-PROD_DATALAKES, CERN-<br>PROD_DATALAKES_MCORE, CERN<br>PROD_DATALAKES_TESTA, 3 more              | -            | 1           | 4                 | 43           | 5 1            | 1             |
| unning  | 20126032 | hammercloud-<br>ai-12 | 1012: A.F.T. AtlasDerivation 20.7.6.4<br>clone.808 clone.845 EULAKE folder<br>CERN                                                | 13/Sep, 12:36            | 14/Sep, 13:51          | ANALY_CERN-PROD_DATALAKES<br>ANALY_CERN-PROD_DATALAKES_TE:<br>ANALY_CERN-PROD_DATALAKES_TE:<br>2 more | STA,<br>STB, | 5           | 0                 | 0            | 0              | D             |
| running | 20126035 | hammercloud-<br>ai-12 | 1007: benchmark digi+reco derivation<br>Athena/21.0.53 5 events - WLCG Data<br>Lakes - local data clone.987 EULAKE<br>folder CERN | 13/Sep, 14:30            | 14/Sep, 13:11          | CERN-PROD_DATALAKES, CERN-<br>PROD_DATALAKES_MCORE, CERN<br>PROD_DATALAKES_TESTA, 3 more              | +            | 1           | 4                 | 23 1         | 5 3            | 4             |
|         |          |                       | Running Tests backe                                                                                                               | d by the standa          | rd storages, co        | py-to-scratch                                                                                         |              |             |                   |              |                |               |
| State   | Id       | Host                  | Template                                                                                                                          | Start<br>(Europe/Zurich) | End<br>(Europe/Zurich  | n) Sites                                                                                              | subm<br>jobs | run<br>jobs | comp<br>jobs      | fail<br>jobs | fail<br>%      | j             |
| running | 20126021 | hammercloud-<br>ai-73 | 845: AFT AtlasDerivation 20.7.6.4<br>clone.808                                                                                    | 12/Sep, 20:42            | 13/Sep, 21:19          | ANALY_ARNES,<br>ANALY_ARNES_DIRECT,<br>ANALY_AUSTRALIA, 142 more                                      | 263          | 231         | 11967             | 1848         | 13             | 1             |
| running | 20126036 | hammercloud-<br>ai-12 | 977: benchmark derivation<br>AthDerivation/21.2.8.0 1k events -<br>WLCG Data Lakes - local data                                   | 13/Sep, 14:46            | 14/Sep, 13:32          | NIKHEF-ELPROD, SARA-MATRIX,<br>BNL_PROD, 5 more                                                       | 2            | 7           | 36                | 0            | 0              |               |
| running | 20126040 | hammercloud-<br>ai-12 | 989: P.F.T. mc16 Sim_tf 21.0.16 - WLCO<br>Data Lakes - local data                                                                 | 13/Sep, 15:40            | 14/Sep, 14:57          | NIKHEF-ELPROD, SARA-MATRIX,<br>BNL_PROD, 5 more                                                       | 3            | 4           | 32                | 1            | 3              |               |
| running | 20126046 | hammercloud-<br>ai-12 | 987: benchmark digi+reco derivation<br>Athena/21.0.53 5 events - WLCG Data<br>Lakes - local data                                  | 13/Sep, 19:12            | 14/Sep, 18:10          | NIKHEF-ELPROD, SARA-MATRIX,<br>BNL_PROD, 5 more                                                       | 1            | 4           | 9                 | 2            | 13             |               |
| _       |          |                       |                                                                                                                                   |                          |                        |                                                                                                       |              |             |                   |              |                |               |



IEEE eScience 2018 Exascale Track, 2018-10-31

# Data Lake, Stage-in Time



Low I/O intensity workflow

#### High I/O intensity workflow

CERN

IEEE eScience 2018 Exascale Track, 2018-10-31

## Data Lake, WallTime x cores



Low I/O intensity workflow

#### High I/O intensity workflow



IEEE eScience 2018 Exascale Track, 2018-10-31

## WLCG DOMA Activities

- Content Delivery and Caching
  - o data access performance, content delivery and caching
- Third Party Copy
  - investigate, commission & deploy alternative TPC protocols to gridFTP; prototype token-based auth in TPC
- QoS
  - at the storage level: define, implement & expose different classes based on performance/reliability need and affordability; integrate the notion of the storage classes up
- DOMA and Related Network activities
  - network R&Ds; focus on data transfer: DTNs, low level transfer protocols, bandwidth on demand, P2P channels, SDNs, ...

### DOMA and AAI

- prototyping an architecture; x509 free, based on Jason Web Tokens
- N.B.: HEP Community White Paper Roadmap arXiv:1712.06982





## Performance metrics and measurements in the Data Lake mode

- Trying to understand if distributed storage saves cost
- With any distributed storage, we can study, measure, and benchmark
  - jobs and distributed storage performance
  - with different workflows
  - w.r.t. different data access modes
- ⇒ Can we hide latency and average out bandwidth so that the data location becomes irrelevant?

Simone Campana, Xavier Espinal Currul, Maria Girone, Ivan Kadochnikov, Gavin McCance, Jaroslava Schovancová

17



