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Glossary

✤ AthenaMP 
✤ Multi-process version of the ATLAS reconstruction,  

simulation and analysis framework Athena.

✤ PanDA 
✤ Production and Distributed Analysis system. Used by ATLAS for running  

production workflows on a variety of computing resources (e.g. Grid, HPC,  
Clouds) worldwide

✤ Pilot 
✤ PandDA component. Manages an instance of AthenaMP on a compute node (input stage-in, 

output stage-out, job monitoring, etc.)
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Why fine-grained processing?

✤ Traditional workflow in ATLAS:
✤ Pilot process on a compute node starts an instance of AthenaMP
✤ Pilot assigns a fixed number of events to AthenaMP
✤ Pilot waits until AthenaMP is done processing all events
✤ If an error occurs during the processing of some event, the entire instance of AthenaMP is 

terminated and all event processing outputs produced so far are discarded

✤ This behavior is not suited for
✤ Opportunistic running (the compute node can be taken away from the job at any time)
✤ Running as part of an MPI job on multiple HPC nodes (wasting CPU time on all compute 

nodes while waiting for the slowest one to finish its task)
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Why fine-grained processing? (contd.)

✤ Fine-grained workflow in ATLAS:
✤ Pilot process on a compute node starts an instance of AthenaMP
✤ Pilot delivers chunks of input events (“event ranges”) to the running AthenaMP
✤ Outputs of event ranges are saved as soon as they have been produced
✤ If an error occurs during the processing of some event range, the range is reported as failed and the 

processing continues

✤ This behavior is well suited for
✤ Opportunistic running (if the compute node vanishes, we lose only those ranges which are currently 

being processed)
✤ Running as part of an MPI job on multiple HPC nodes (by delivering fine-grained inputs at runtime 

we keep all compute nodes busy for the duration of the job)
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Event Service

✤ The JEDI (Job Execution and Definition Interface) 
extension to PanDA breaks down production tasks 
based on optimal usage of available resources

✤ Pilot communicates with PanDA/JEDI over HTTP
✤ Pull new input event ranges
✤ Report the status of completed ranges

✤ AthenaMP writes new output for each completed 
event range
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✤ Fine-grained outputs are streamed in real-time to Object Stores

✤ Missing Component: Event Streaming Service. Discussed later in this presentation



Yoda - Event Service on Supercomputers

✤ Event Service on HPC is 
an MPI application

✤ MPI ranks in this 
application are 
lightweight versions of 
the conventional Event 
Service components 
✤ Yoda - mini JEDI
✤ Droid - lightweight Pilot
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✤ Each rank writes many small output files to the disk. Results in high load on the HPC shared file system
➡ We plan to address this problem by implementing specialized MPI ranks for collecting outputs from 

other ranks and writing them to the disk (“Shared MPI Writer” processes) 



Improved resource utilization
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✤ ATLAS is running conventional Simulation workflows on HPC by combining multiple independent 
instances of AthenaMP into one MPI submission

✤ In this approach the MPI job holds on all of its compute nodes until the slowest one is finished
✤ Wasted CPU cycles at the end of the job

✤ The plots below show node utilizations within two such MPI jobs at NERSC (Berkeley, US)

Green: node is busy
White: node is idle

Unfortunate JobRegular Job



Improved resource utilization (contd.)
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✤ Yoda addresses this problem by constantly streaming input events to the compute nodes until the 
entire MPI job reaches its wall clock limit

✤ The plots below show CPU core utilizations within an HPC compute node for conventional and 
Yoda jobs

Green: core is processing an event
White: core is idle
Red: the last interrupted event
Blue: core is waiting for next event

Regular Job Yoda



Event Service in ATLAS today

✤ Today ATLAS is actively using Event Service for 
running Geant4 Simulation production jobs

✤ Event Service fraction in the total delivered ATLAS 
Simulation walltime is increasing

✤ We are currently evaluating the feasibility of 
running at least some part of all Simulation tasks 
with the Event Service for faster turnaround 
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Walltime delivered by the Event Service wrt 
Regular Simulation per calendar month



Yoda in ATLAS today

✤ Yoda is running in production on several 
supercomputers
✤ Full scale production on Theta (ALCF, Argonne, US) 

and Cori (NERSC, Berkeley, US)
✤ Titan (OLCF, Oak Ridge, US) is running Yoda in 

backfill mode. Working on ramping up to the full scale

✤ In the near future Yoda is expected to become a 
major contributor to the overall ATLAS Geant4 
simulation production
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Number of events/day delivered by Yoda  
in second half of September 2018



From Event Service to Event Streaming Service

✤ The Event Service can integrate perfectly with a similarly event-level data 
delivery service - the Event Streaming Service - that responds to requests for 
“science data objects” by intelligently marshaling and sending the data 
needed

✤ The Event Streaming Service can encompass
✤ Optimization of data source “close” to the client, like in Content Delivery Networks
✤ Knowledge of the data itself sufficient to intelligently filter event data during 

marshaling
✤ Servicing the request via processing on demand rather than serving preexisting data
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Prototyping the Event Streaming Service

✤ Server component currently in 
the R&D phase
✤ Uses knowledge available in the 

system for preparing required 
input in advance 

✤ Asynchronous prefetching of 
fine grained inputs on the 
compute node done by a 
specialized process
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Summary

✤ Event Service is our strategy for efficient utilization of the variety of 
computing resources, in particular supercomputers and opportunistic 
resources

✤ Flexible architecture of the Event Service/Yoda has a potential for efficient 
scaling to hundreds of compute nodes on modern HPC systems

✤ Next step in the evolution of fine-grained processing in ATLAS - the Event 
Streaming Service - is currently in an R&D phase
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