
31-October-2018

D Benjamin, P Calafiura, T Childers, K De, A Di Girolamo, E Fullana, W Guan, T Maeno,  
N Magini, P Nilsson, D Oleynik, S Sun, V Tsulaia, P Van Gemmeren, T Wenaus and W Yang

For the ATLAS Collaboration

Fine-grained processing towards HL-LHC
computing in ATLAS
Exascale Computing for High Energy Physics session @ eScience 2018, Amsterdam

Glossary

✤ AthenaMP
✤ Multi-process version of the ATLAS reconstruction,  

simulation and analysis framework Athena.

✤ PanDA
✤ Production and Distributed Analysis system. Used by ATLAS for running  

production workflows on a variety of computing resources (e.g. Grid, HPC,  
Clouds) worldwide

✤ Pilot
✤ PandDA component. Manages an instance of AthenaMP on a compute node (input stage-in,

output stage-out, job monitoring, etc.)

idle
idle
idle

Master

Event Processor
Event Processor
Event Processor
Event ProcessorCore 1

Core 2
Core 3
Core 4

fork join

AthenaMP

!2Fine-grained processing in ATLAS, eScience 2018

Why fine-grained processing?

✤ Traditional workflow in ATLAS:
✤ Pilot process on a compute node starts an instance of AthenaMP
✤ Pilot assigns a fixed number of events to AthenaMP
✤ Pilot waits until AthenaMP is done processing all events
✤ If an error occurs during the processing of some event, the entire instance of AthenaMP is

terminated and all event processing outputs produced so far are discarded

✤ This behavior is not suited for
✤ Opportunistic running (the compute node can be taken away from the job at any time)
✤ Running as part of an MPI job on multiple HPC nodes (wasting CPU time on all compute

nodes while waiting for the slowest one to finish its task)

!3Fine-grained processing in ATLAS, eScience 2018

Why fine-grained processing? (contd.)

✤ Fine-grained workflow in ATLAS:
✤ Pilot process on a compute node starts an instance of AthenaMP
✤ Pilot delivers chunks of input events (“event ranges”) to the running AthenaMP
✤ Outputs of event ranges are saved as soon as they have been produced
✤ If an error occurs during the processing of some event range, the range is reported as failed and the

processing continues

✤ This behavior is well suited for
✤ Opportunistic running (if the compute node vanishes, we lose only those ranges which are currently

being processed)
✤ Running as part of an MPI job on multiple HPC nodes (by delivering fine-grained inputs at runtime

we keep all compute nodes busy for the duration of the job)

!4Fine-grained processing in ATLAS, eScience 2018

Event Service

✤ The JEDI (Job Execution and Definition Interface)
extension to PanDA breaks down production tasks
based on optimal usage of available resources

✤ Pilot communicates with PanDA/JEDI over HTTP
✤ Pull new input event ranges
✤ Report the status of completed ranges

✤ AthenaMP writes new output for each completed
event range

!5Fine-grained processing in ATLAS, eScience 2018

Pilot

Local Disk

Event Service

IPC
WN

Deliver
Input

Get Input

Send Output

Get Event Ranges
 (HTTP)

Report Range Status
 (HTTP)

Store OutputAccess Output

Get Input

Event
Streaming  
Service

Input  
Data

AthenaMP

Input  
Data

Input  
Data

Object StoreObject StoreObject Store

✤ Fine-grained outputs are streamed in real-time to Object Stores

✤ Missing Component: Event Streaming Service. Discussed later in this presentation

Yoda - Event Service on Supercomputers

✤ Event Service on HPC is
an MPI application

✤ MPI ranks in this
application are
lightweight versions of
the conventional Event
Service components
✤ Yoda - mini JEDI
✤ Droid - lightweight Pilot

!6Fine-grained processing in ATLAS, eScience 2018

Yoda

Yoda  
MPI Rank 0

Droid  
MPI Rank 1

Shared File System
I/O

MPI Application
IPC

WN

WN
P

ilo
t

Edge  
Node

Get  
Jobs

Submit

Send  
Output

Stage In Inputs 
 Collect Outputs

 Event Ranges
(MPI Send/Recv)

Output File Names
 (MPI Send/Recv)

Object StoreObject StoreObject Store

AthenaMP

Droid  
MPI Rank 1

IPCWN

AthenaMP

Droid  
MPI Rank 1

IPCWN

AthenaMP

✤ Each rank writes many small output files to the disk. Results in high load on the HPC shared file system
➡ We plan to address this problem by implementing specialized MPI ranks for collecting outputs from

other ranks and writing them to the disk (“Shared MPI Writer” processes)

Improved resource utilization

!7

✤ ATLAS is running conventional Simulation workflows on HPC by combining multiple independent
instances of AthenaMP into one MPI submission

✤ In this approach the MPI job holds on all of its compute nodes until the slowest one is finished
✤ Wasted CPU cycles at the end of the job

✤ The plots below show node utilizations within two such MPI jobs at NERSC (Berkeley, US)

Green: node is busy
White: node is idle

Unfortunate JobRegular Job

Improved resource utilization (contd.)

!8

✤ Yoda addresses this problem by constantly streaming input events to the compute nodes until the
entire MPI job reaches its wall clock limit

✤ The plots below show CPU core utilizations within an HPC compute node for conventional and
Yoda jobs

Green: core is processing an event
White: core is idle
Red: the last interrupted event
Blue: core is waiting for next event

Regular Job Yoda

Event Service in ATLAS today

✤ Today ATLAS is actively using Event Service for
running Geant4 Simulation production jobs

✤ Event Service fraction in the total delivered ATLAS
Simulation walltime is increasing

✤ We are currently evaluating the feasibility of
running at least some part of all Simulation tasks
with the Event Service for faster turnaround

!9Fine-grained processing in ATLAS, eScience 2018

Walltime delivered by the Event Service wrt
Regular Simulation per calendar month

Yoda in ATLAS today

✤ Yoda is running in production on several
supercomputers
✤ Full scale production on Theta (ALCF, Argonne, US)

and Cori (NERSC, Berkeley, US)
✤ Titan (OLCF, Oak Ridge, US) is running Yoda in

backfill mode. Working on ramping up to the full scale

✤ In the near future Yoda is expected to become a
major contributor to the overall ATLAS Geant4
simulation production

!10Fine-grained processing in ATLAS, eScience 2018

Number of events/day delivered by Yoda  
in second half of September 2018

From Event Service to Event Streaming Service

✤ The Event Service can integrate perfectly with a similarly event-level data
delivery service - the Event Streaming Service - that responds to requests for
“science data objects” by intelligently marshaling and sending the data
needed

✤ The Event Streaming Service can encompass
✤ Optimization of data source “close” to the client, like in Content Delivery Networks
✤ Knowledge of the data itself sufficient to intelligently filter event data during

marshaling
✤ Servicing the request via processing on demand rather than serving preexisting data

!11Fine-grained processing in ATLAS, eScience 2018

Prototyping the Event Streaming Service

✤ Server component currently in
the R&D phase
✤ Uses knowledge available in the

system for preparing required
input in advance

✤ Asynchronous prefetching of
fine grained inputs on the
compute node done by a
specialized process

!12Fine-grained processing in ATLAS, eScience 2018

Pilot

Worker Node

Get Event Range

Event Range + Local File Name

Request data

Prefetcher

AthenaMP Worker

Local Inputs

Event Range
Write File Locally

Read

Local Outputs
Write

ESS

AthenaMP

Service
Request File

Data Reader

Send File

Server

Prepare data

Summary

✤ Event Service is our strategy for efficient utilization of the variety of
computing resources, in particular supercomputers and opportunistic
resources

✤ Flexible architecture of the Event Service/Yoda has a potential for efficient
scaling to hundreds of compute nodes on modern HPC systems

✤ Next step in the evolution of fine-grained processing in ATLAS - the Event
Streaming Service - is currently in an R&D phase

!13Fine-grained processing in ATLAS, eScience 2018

