Deep generative models for fast shower simulation in ATLAS

Dalila Salamani

University of Geneva dalila.salamani@cern.ch

On behalf of the ATLAS collaboration

14th e-science IEEE International Conference

2018

Outline

- Context & Motivation
- Rise of generative models
 - Generative models for HEP
 - Model architectures : VAE & GAN
- Validation of generation performance

Conclusion

Large Hadron Collider (LHC)

CMS

27 km long LHC collider
High energy protons with 99.99% the speed of light
Helps to answer big questions

Big bang
Dark matter , ...

CFRN Mevrin

ATLAS-

CERN Prévessin

LICE

Collision event

. :

Collision event

 Bunches of protons collide every 25 ns Today ~50 proton-proton interactions per bunch crossing (pile-up) **Complexity** of reconstruction algorithms doesn't scale linearly with

pile-up (combinatorics)

ATLAS detector

muon spectrometer Showering process
 Cascade of energy deposition along the calorimeter layers.

ATLAS detector

muon

spectrometer

Showering process

Cascade of energy
deposition along the
calorimeter layers,

Detector simulation (MonteCarlo) **Design an experiment (Clic,** FCC* hadronic **Data analysis** calorimeter \bigcirc proton neutron electromagnetic calorimeter electron solenoid magnet transition radiation tracking tracker pixel/SCT detector * Compact Linear Collider Future Circular Collider http://atlas.ch

Motivation

- Successful physics program in ATLAS depends on the availability of high statistics Monte Carlo simulated events.
- Currently >50 % of ATLAS computing time is spent on shower simulation.
- LHC is collecting more and more events (High Luminosity Upgrade) → more
 CPU consumption.

Motivation

- Successful physics program in ATLAS depends on the availability of high statistics Monte Carlo simulated events.
- Currently >50 % of ATLAS computing time is spent on shower simulation.
- LHC is collecting more and more events (High Luminosity Upgrade) → more

CPU consumption.

 Challenge: <u>Develop fast shower</u> <u>simulation framework.</u>

Machine learning

- Learning process
 - Learn to improve performance by experience *
 - Automatic & Adapted model to domain application
 - Discover knowledge from dataset (engineering bottleneck)

Machine learning

- Learning process
 - Learn to improve performance by experience *
 - Automatic & Adapted model to domain application
 - Discover knowledge from dataset (engineering bottleneck)

Generative models

- Learn the true **data distribution** of the training set **to reproduce it**.
- <u>Adopted approaches</u>: Use of deep neural networks to learn the approximation function of the true (& sparse) distribution, Variational Autoencoders (VAEs) & Generative Adversarial Networks(GANs)

Generative models : domain application

Learning to generate speech : Den Oord et al, 2016

Drug Discovery : Chen et al, 2018

Learning to generate images : Brock et al, 2018

Generative models : domain application

Learning to generate speech : Den Oord et al, 2016

And now...HEP

Drug Discovery : Chen et al. 2018

Learning to generate images : Brock et al, 2018

Generative models for HEP (Showering)

- Model the shower process.
- Take into account the ATLAS calorimeter geometry.
- Validation : shower shape variables distribution comparison.
- Fast & accurate modeling.
- First application of deep generative models for fast shower simulation in

ATLAS: Public Note <u>ATL-SOFT-PUB-2018-001</u>.

Dataset & preprocessing

• Single photon samples in the electromagnetic.

calorimeter (4 layers with different granularities).

- Pseudorapidity **0.20 < |η| < 0.25**.
- Energies in [1, 260] GeV logarithmically spaced.
- A total of **266 cells** (7 x 3, 56 x 3, 7 x and 4 x 7)

are considered for energy deposits.

Reference

VAE model architecture

19

GAN model architecture

Generation results: energy per layer

- Energy deposited in the individual electromagnetic calorimeter layers for photons 65 GeV.
- Challenges posed by layers
 with low (and sparse) energy
 deposits, i.e. late showers.

Reference

Generation results: reconstructed longitudinal shower center

<u>Reference</u>

Generation results: Average energy vs $\Delta \eta$, $\Delta \phi$

Average energy vs $\Delta \eta$ Layer : STRIP

Average energy vs $\Delta \phi$ Layer : MIDDLE

Conclusion & Outlook

- Fast shower simulation is essential for LHC experiments physics program.
- Proof of concept for generative Deep Learning models for simulating particle showers.
- Promising results and active development towards achieving required accuracy.
- **Outlook**: improve the model to fit a larger class of particle types & pseudorapidity regions.

Thank you

Backup slides

Hyperparameters optimization for VAE

Hyperparameter	Values
Latent space dim.	$[1, \ldots, 10, \ldots, 100]$
Reco. weight	$(0,\ldots,1,\ldots,3]$
KL weight	$(0, \ldots, \mathbf{10^{-4}}, \ldots, 1]$
$E_{\rm tot}$ weight	$[0, \ldots, \mathbf{10^{-2}}, \ldots, 1]$
	$[0, \ldots, 8 \times \mathbf{10^{-2}}, \ldots, 1]$
E_i weights	$[0, \ldots, 6 \times 10^{-1}, \ldots, 1]$
	$[0, \ldots, 2 \times \mathbf{10^{-1}}, \ldots, 1]$
	$[0, \ldots, 10^{-1}, \ldots, 1]$
Hidden layers (encoder)	1, 2, 3, 4, 5
Hidden layers (decoder)	1, 2, 3, 4, 5
Units per layer	$[180, \ldots, 200, \ldots, 266]$
	$[120, \ldots, 150, \ldots, 180]$
	$[80, \ldots, 100, \ldots, 120]$
	$[10, \ldots, 50, \ldots, 80]$
Activation func.	ELU , ReLU, SELU, LeakyReLU, PReLU
Kernel init.	zeros, ones, random normal, random uniform, truncated normal,
	variance scaling, glorot_normal
Bias init.	zeros, ones , random normal, random uniform, truncated normal,
	variance scaling, glorot_normal
Optimizer	RMSprop, Adam, Adagrad, Adadelta, Nadam
Learning rate	$[10^{-2}, \ldots, 10^{-4}, \ldots, 10^{-6}]$
Mini-batch size	50, 100 , 150 , 1000

Hyperparameters optimization for GAN

Hyperparameter	Values
Uiddon Jayang	1 9 5 10
fildden layers	1, 3 , 5, 10
Units per layer	64, 128 , 512, 1024
	$SELU + Sigmoid, LeakyReLU + {Sigmoid, ReLU},$
Activation func.	Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
	softmax + ReLU
Activity L1_REG_WEIGHT $(Gen.)$	$0, \mathbf{10^{-5}}, 10^{-2}$
Kernel init.	glorot_uniform, lecun_normal
Gradient penalty	one-sided, two-sided
Gradient penalty weight	0, 10 , 20
Training ratio	20, 10, 5 , 3, 1
	$5 \times \mathbf{10^{-5}}, 5 \times 10^{-6}, 1 \times 10^{-6} (\text{training ratio 5})$
Learning rate	$5 \times 10^{-5}, 5 \times 10^{-6}, 1 \times 10^{-5}, 1 \times 10^{-7}$ (training ratio 3)
	1×10^{-6} (training ratio 1)
Mini-batch size	64, 1024
Preprocessing (all norm. to E_{γ})	$\log_{10} E_{\text{cell}}, \log_{10}(E_{\text{cell}} \times 10^{10}), E_{\text{cell}}$
Conditioning	$\{E_{\gamma}, \log_{10}E_{\gamma}\}$ + multi-hot encoding of cell alignments

27