
C. Leggett 2018-10-31
1

Simulating HEP Workflows on Heterogeneous

Architectures

Charles Leggett, Illya Shapoval
on behalf of the ATLAS collaboration

iEEE eScience Amsterdam

Oct 31 2018

C. Leggett 2018-10-31
2

Next Generation HPC Architectures
► In the next generation of supercomputers we see extensive use of accelerator

technologies
• Oak Ridge: Summit (2018)

• 4608 IBM AC922 nodes w/ 2x Power9 CPU
• 3x NVIDIA Volta V100 + NVLink / CPU

• Texas: Frontera (2019)
• 8064 x2 Xeon
• "single precision GPU subsystem"

• Argonne: Aurora (2021?) → A21
• ??? - was supposed to be successor to KNL
• "novel architecture" -> maybe CSA?

► In order to meet the HL-LHC computing requirements, we need to use all available
computing resources, or cut back physics projections

► US funding agencies have indicated that we will not be able to get allocations if our
code does not make use of accelerator hardware

• LLNL: Sierra (2018)
• 4320 IBM AC922 nodes w/ 2x Power9 CPU
• 2x NVIDIA Volta V100 + NVLink / CPU

• LBL: NERSC-9 (2020)
• was supposed to be successor to KNL
• AMD x86 + GPU

C. Leggett 2018-10-31
3

Offloading HEP Software
► In general, very little HEP software has been coded to run on accelerators

• mostly tracking
• some Geant4 EM and neutral processes
• calorimeter cluster seeding
• most HEP codebases don't parallelize easily

► Extensive work is being done to rewrite certain algorithms making use of machine
learning technologies
• not easy, and time consuming

► Before expending vast resources recoding, it is essential to understand how much
actually needs to be rewritten to make use of accelerators
• can we identify critical bottlenecks?

► We can simulate HEP workflows and see what kind of Algorithms are most beneficial
to offload

C. Leggett 2018-10-31
4

Understanding HEP Workflows
► As a test case, we have selected a standard ATLAS reconstruction workflow that

comprises 197 Algorithms
• Algorithm data interdependencies and timings have been extracted from actual data
• Run using Gaudi Avalanche task scheduler, with artificial CPU Crunchers instead of real

algorithms, allowing cloning of all Algorithms

► Analyze graph to identify critical path
• Longest path through the graph, with run times taken as node weights
• Algorithms that, with sufficient concurrency, determine event processing time
• 19 Algorithms, 5.6s out of 10.2s total event processing time

C. Leggett 2018-10-31
5

Algorithm Offloading
► An Algorithm that offloads data to an external resource blocks its software thread

• allow blocking thread to be pre-empted and displaced from the linux kernel run queue until
it wakes up

• hide latency by scheduling another thread if one is available
• oversubscribe the scheduler with more threads than available hardware threads
• for offline processing, event throughput is the only metric that matters

► Model offloading by modifying runtime torig of the Algorithm with 3 parameters:
• fraction (frac) of Algorithm runtime that can be offloaded
• efficiency (eff) of running offloaded part on accelerator (does it run faster or slower?)
• extra time (textra) to transfer data to/from accelerator
• the CPU will then run for tcpu and the accelerator for toffload

tcpu = torig * (1-frac) toffload = torig * frac * (1+eff) + textra

► Actual offload simulation performed by calling sleep
• linux kernel does the rest for us

C. Leggett 2018-10-31
6

Offloading Critical or Non-Critical Path Algorithms
► Choosing which Algorithms to

offload can be critical
► We can measure the throughput

of the job varying the offloading
fraction and efficiency

► If the accelerator takes much
longer to execute the algorithm
than the CPU, it has the effect of
lengthening the critical path. This
can be overcome by increasing
the number of concurrent events.
• this may be limited by other

system resource constraints
► While the actual algorithmic content of the Algorithm will ultimately decide whether it

can be usefully offloaded, knowing that offloading Algorithms on the critical path has a
larger impact on throughput will reduce the number of Algorithms to manually inspect

C. Leggett 2018-10-31
7

Comparison of Changing Accelerator Efficiency
► Offload Algorithms on

the critical path

► Does it matter if
Algorithms don't run much
faster on the accelerator?

► Decreasing the accelerator
efficiency (runs faster on
accelerator) has the effect of
increasing the occupancy,
and decreasing the length of
the critical path
• throughput 2.7x higher

threads: 35
concurrent events: 10
offload frac: 0.9
offload eff: 0.75 -> -0.75

100 events

267 events

eff = .75

eff = -.75

average occupancy: .477

average occupancy: .738

C. Leggett 2018-10-31
8

Offloading Algorithms not on Critical Path
► Offloading Algorithms

not on the critical path,
with different
accelerator efficiencies

► Total throughput is
comparable, but one
has significantly higher
occupancy than the
other
• must increase concurrency

to maximize throughput

threads: 35
concurrent events: 10
total events: 100
offload frac: 0.9
offload eff: 0.75 -> -0.75

eff = .75

eff = -.75

average occupancy: .581

average occupancy: .353

C. Leggett 2018-10-31
11

Oversubscription
► Running with as many software threads as hardware threads results in less than full

occupancy, as the offloaded Algorithms' hardware threads are idle

limit to 10 hardware threads
offload frac = 0.9

C. Leggett 2018-10-31
13

Oversubscription
► Running with as many software threads as hardware threads results in less than full

occupancy, as the offloaded Algorithms' hardware threads are idle

► We can oversubscribe
the CPU with more
threads to maximize
throughput

► This may require
increasing the number
of concurrent events
depending on available
concurrency to get
maximum throughput

limit to 10 hardware threads
offload frac = 0.9

C. Leggett 2018-10-31
14

Oversubscription
► Running with as many software threads as hardware threads results in less than full

occupancy, as the offloaded Algorithms' hardware threads are idle

► We can oversubscribe
the CPU with more
threads to maximize
throughput

► This may require
increasing the number
of concurrent events
depending on available
concurrency to get
maximum throughput

limit to 10 hardware threads
offload frac = 0.9

C. Leggett 2018-10-31
15

Oversubscription
► Running with as many software threads as hardware threads results in less than full

occupancy, as the offloaded Algorithms' hardware threads are idle

► We can oversubscribe
the CPU with more
threads to maximize
throughput

► This may require
increasing the number
of concurrent events
depending on available
concurrency to get
maximum throughput

limit to 10 hardware threads
offload frac = 0.9

C. Leggett 2018-10-31
16

Oversubscription
► Running with as many software threads as hardware threads results in less than full

occupancy, as the offloaded Algorithms' hardware threads are idle

► We can oversubscribe
the CPU with more
threads to maximize
throughput

► This may require
increasing the number
of concurrent events
depending on available
concurrency to get
maximum throughput

limit to 10 hardware threads
offload frac = 0.9

C. Leggett 2018-10-31
17

Accelerator Data Transfer Latencies
► It takes time to marshal data, and send it to (and get it back) from an accelerator
► Depending on the Algorithm, this might be significant
► Does this added latency matter?

► Has a similar effect on throughput as decreasing the efficiency of the offloaded
Algorithm
• at some point, it begins to matter
• effect is very dependent on the runtime of the Algorithm on the accelerator, and the amount

of data transmitted

► The effect (less than optimal CPU occupancy) can be managed by increasing the
number of concurrent events
• some downsides due to increased memory usage

► In general, as long as the CPU is not spending time converting/transmitting data (ie,
data is already in a form that the accelerator can easily use), this is not likely to be a
problem

C. Leggett 2018-10-31
18

Conclusions
► Scheduling framework modifications to offload Algorithms to accelerators are relatively

minimal
• results are not particular to Gaudi/ATLAS, but applicable to most task based schedulers

► Simulated throughput studies show that offloading Algorithms on the critical path can
be much more advantageous than others
• rewriting these Algorithms for the accelerator is an exercise left for the implementer....
• offloading other Algorithms may require increasing the number of concurrent events to

maximize throughput

► Algorithms don't need to run exceptionally efficiently (faster than on the CPU) on the
accelerator
• inefficient accelerator usage can be offset by increasing number of concurrent events

► Oversubscription of hardware threads on the CPU is essential to maximizing overall
throughput
• threads that offload Algorithms are basically sleeping until the accelerator returns
• in our scenario the cost of context switching in negligible enough to not affect performance

C. Leggett 2018-10-31
19

Extra Slides

C. Leggett 2018-10-31
20

Algorithms on the Critical Path

DetailedTrackTruthMakerAlg
EDpfIsoCentralAlg
eflowEMCaloObjectBuilderAlg
eflowObjectBuilder_EMAlg
InDetAmbiguitySolverAlg
InDetExtensionProcessorAlg
InDetSiSpTrackFinderAlg
InDetTrackCollectionMergerAlg
InDetTrackParticlesAlg
InDetTRT_ExtensionAlg
jetalgAlg
METAssociationAlg
METMakerAlg_AntiKt4EMTopoAlg
MuonCombinedAlg
MuonCombinedInDetCandidateAlg
MuonCreatorAlg
StreamAODAlg
TauCoreBuilderAlg
TrackTruthCollectionSelectorAlg

C. Leggett 2018-10-31
21

► timeline chart for 1 event w/ 35 threads, no offloading
• critical path Algorithms in red

C. Leggett 2018-10-31
22

► timeline chart for 35 concurrent evts w/ 35 threads, no offloading, 500 events

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

