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Next Generation HPC Architectures
► In the next generation of supercomputers we see extensive use of accelerator 

technologies
• Oak Ridge: Summit (2018)

• 4608 IBM AC922 nodes w/ 2x Power9 CPU 
• 3x NVIDIA Volta V100 + NVLink / CPU

• Texas: Frontera (2019)
• 8064 x2 Xeon 
• "single precision GPU subsystem"

• Argonne: Aurora (2021?) → A21
• ??? - was supposed to be successor to KNL
• "novel architecture" -> maybe CSA?

► In order to meet the HL-LHC computing requirements, we need to use all available 
computing resources, or cut back physics projections 

► US funding agencies have indicated that we will not be able to get allocations if our 
code does not make use of accelerator hardware

• LLNL: Sierra (2018)
• 4320 IBM AC922 nodes w/ 2x Power9 CPU
• 2x NVIDIA Volta V100 + NVLink / CPU

• LBL: NERSC-9 (2020)
• was supposed to be successor to KNL
• AMD x86 + GPU
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Offloading HEP Software
► In general, very little HEP software has been coded to run on accelerators

• mostly tracking
• some Geant4 EM and neutral processes
• calorimeter cluster seeding
• most HEP codebases don't parallelize easily

► Extensive work is being done to rewrite certain algorithms making use of machine 
learning technologies
• not easy, and time consuming

► Before expending vast resources recoding, it is essential to understand how much 
actually needs to be rewritten to make use of accelerators 
• can we identify critical bottlenecks?

► We can simulate HEP workflows and see what kind of Algorithms are most beneficial 
to offload
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Understanding HEP Workflows
► As a test case, we have selected a standard ATLAS reconstruction workflow that 

comprises 197 Algorithms
• Algorithm data interdependencies and timings have been extracted from actual data
• Run using Gaudi Avalanche task scheduler, with artificial CPU Crunchers instead of real 

algorithms, allowing cloning of all Algorithms

► Analyze graph to identify critical path
• Longest path through the graph, with run times taken as node weights
• Algorithms that, with sufficient concurrency, determine event processing time
• 19 Algorithms, 5.6s out of 10.2s total event processing time
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Algorithm Offloading
► An Algorithm that offloads data to an external resource blocks its software thread

• allow blocking thread to be pre-empted and displaced from the linux kernel run queue until 
it wakes up

• hide latency by scheduling another thread if one is available
• oversubscribe the scheduler with more threads than available hardware threads
• for offline processing, event throughput is the only metric that matters

► Model offloading by modifying runtime torig of the Algorithm with 3 parameters:
• fraction (frac) of Algorithm runtime that can be offloaded
• efficiency (eff) of running offloaded part on accelerator (does it run faster or slower?)
• extra time (textra) to transfer data to/from accelerator
• the CPU will then run for tcpu and the accelerator for toffload

tcpu = torig * (1-frac)                 toffload = torig * frac * (1+eff) + textra             

► Actual offload simulation performed by calling sleep
• linux kernel does the rest for us
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Offloading Critical or Non-Critical Path Algorithms
► Choosing which Algorithms to 

offload can be critical
► We can measure the throughput 

of the job varying the offloading 
fraction and efficiency

► If the accelerator takes much 
longer to execute the algorithm 
than the CPU, it has the effect of 
lengthening the critical path. This 
can be overcome by increasing 
the number of concurrent events.
• this may be limited by other 

system resource constraints
► While the actual algorithmic content of the Algorithm will ultimately decide whether it 

can be usefully offloaded, knowing that offloading Algorithms on the critical path has a 
larger impact on throughput will reduce the number of Algorithms to manually inspect
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Comparison of Changing Accelerator Efficiency
► Offload Algorithms on 

the critical path

► Does it matter if 
Algorithms don't run much 
faster on the accelerator?

► Decreasing the accelerator 
efficiency (runs faster on 
accelerator) has the effect of 
increasing the occupancy, 
and decreasing the length of 
the critical path
• throughput 2.7x higher

threads: 35
concurrent events: 10 
offload frac: 0.9
offload eff: 0.75 -> -0.75

  

100 events

267 events

eff = .75

eff = -.75

average occupancy: .477

average occupancy: .738
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Offloading Algorithms not on Critical Path
► Offloading Algorithms 

not on the critical path, 
with different 
accelerator efficiencies

► Total throughput is 
comparable, but one 
has significantly higher 
occupancy than the 
other
• must increase concurrency 

to maximize throughput

threads: 35
concurrent events: 10
total events: 100
offload frac: 0.9
offload eff: 0.75 -> -0.75

eff = .75

eff = -.75

average occupancy: .581

average occupancy: .353
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Oversubscription
► Running with as many software threads as hardware threads results in less than full 

occupancy, as the offloaded Algorithms' hardware threads are idle

limit to 10 hardware threads
offload frac = 0.9
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Accelerator Data Transfer Latencies
► It takes time to marshal data, and send it to (and get it back) from an accelerator
► Depending on the Algorithm, this might be significant
► Does this added latency matter?

► Has a similar effect on throughput as decreasing the efficiency of the offloaded 
Algorithm
• at some point, it begins to matter
• effect is very dependent on the runtime of the Algorithm on the accelerator, and the amount 

of data transmitted

► The effect (less than optimal CPU occupancy) can be managed by increasing the 
number of concurrent events
• some downsides due to increased memory usage

► In general, as long as the CPU is not spending time converting/transmitting data (ie, 
data is already in a form that the accelerator can easily use), this is not likely to be a 
problem
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Conclusions
► Scheduling framework modifications to offload Algorithms to accelerators are relatively 

minimal
• results are not particular to Gaudi/ATLAS, but applicable to most task based schedulers

► Simulated throughput studies show that offloading Algorithms on the critical path can 
be much more advantageous than others
• rewriting these Algorithms for the accelerator is an exercise left for the implementer.... 
• offloading other Algorithms may require increasing the number of concurrent events to 

maximize throughput

► Algorithms don't need to run exceptionally efficiently (faster than on the CPU) on the 
accelerator
• inefficient accelerator usage can be offset by increasing number of concurrent events

► Oversubscription of hardware threads on the CPU is essential to maximizing overall 
throughput
• threads that offload Algorithms are basically sleeping until the accelerator returns
• in our scenario the cost of context switching in negligible enough to not affect performance 
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Extra Slides
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Algorithms on the Critical Path

DetailedTrackTruthMakerAlg
EDpfIsoCentralAlg
eflowEMCaloObjectBuilderAlg
eflowObjectBuilder_EMAlg
InDetAmbiguitySolverAlg
InDetExtensionProcessorAlg
InDetSiSpTrackFinderAlg
InDetTrackCollectionMergerAlg
InDetTrackParticlesAlg
InDetTRT_ExtensionAlg
jetalgAlg
METAssociationAlg
METMakerAlg_AntiKt4EMTopoAlg
MuonCombinedAlg
MuonCombinedInDetCandidateAlg
MuonCreatorAlg
StreamAODAlg
TauCoreBuilderAlg
TrackTruthCollectionSelectorAlg
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► timeline chart for 1 event w/ 35 threads, no offloading
• critical path Algorithms in red
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► timeline chart for 35 concurrent evts w/ 35 threads, no offloading, 500 events
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