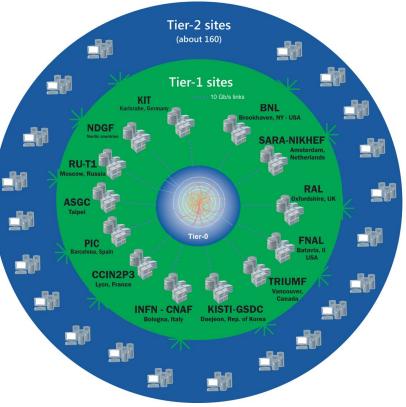


ESCIENCE IEEE INTERNATIONAL CONFERENCE

Distributed and on-demand cache for CMS experiment at LHC

Diego Ciangottini on behalf of CMS Collaboration and INFN-Cache team

D. Ciangottini - Distributed and on-demand cache for CMS experiment at LHC - IEEE eScience 2018

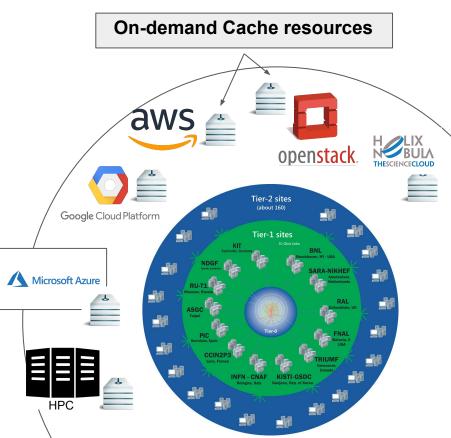

Outline

- Introduction
- 2 scenarios of evaluation
 - cache on ephemeral storage for opportunistic resources
 - geo-distributed cache with unmanaged storage
- Performance results
- Conclusion and future activities

CMS current model in a nutshell

- Hierarchical centrally managed storages at computing sites (Tier)
- Payloads **run at the site that stores** the requested data
- Remote data access already technically supported
 - fallback to remote in case of local read failure
 - overflow of jobs to near sites

Extension: dynamic resource provisioning


Scenario 1

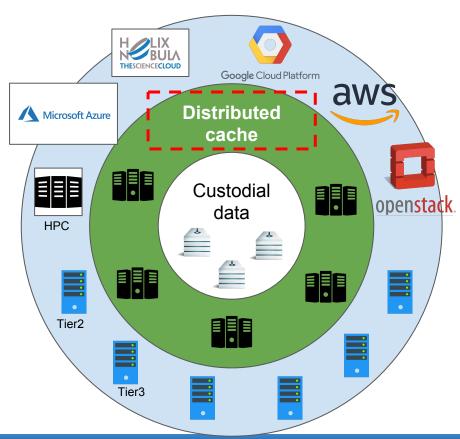
Computing resources are opportunistically deployed on cloud/HPC resources

- storage not necessarily available
 - remote read latency
 - I/O inefficient

The **cache** introduction may offer:

- ephemeral storage for hot data near the computing provider
- **optimized wan access**, only for data not already on the cache

Cache layer in data-lake for HL-LHC


Scenario 2

Few world-wide custodial centers with data replica managed by the experiment

• Computing Tiers access data directly from closest custodial center

Using cache for a Content Delivery Network approach:

- geo-distributed network of unmanaged storages
- common namespace (no data replication)
- request mitigation to custodial sites

Technology: XCache evaluation

Two scenarios for evaluation:

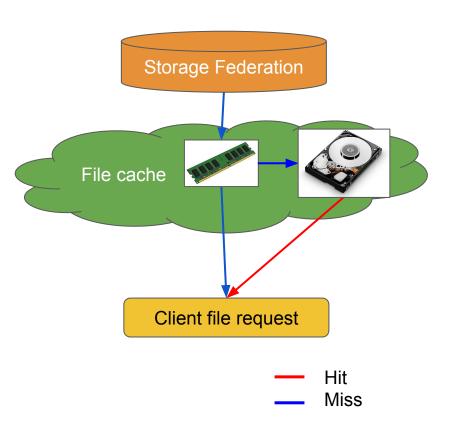
- cache on ephemeral storage for opportunistic resources
- geo-distributed cache with unmanaged storage

XCache technology have been used in both of the activities:

- Part of **XRootD** technology already widely used in WLCG for **federating storages**
 - Storage resources are accessible for any data, anywhere at anytime (AAA)
 - XRootD infrastructure spans all of the Tier-1 and Tier-2 sites in EU and US CMS

XCache mechanics

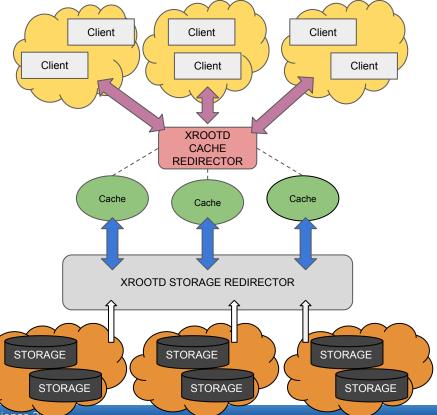
Open File

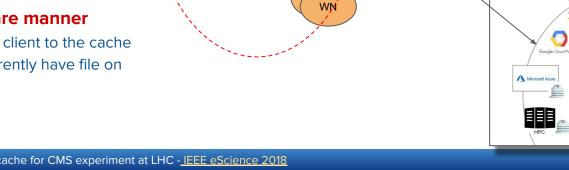

- 1. *Cold cache:* remote open through storage Federation
- 2. *Warm cache:* opens file on local disk


Note: remote open is only initiated if/when a requested block is not available in the cache.

Read File

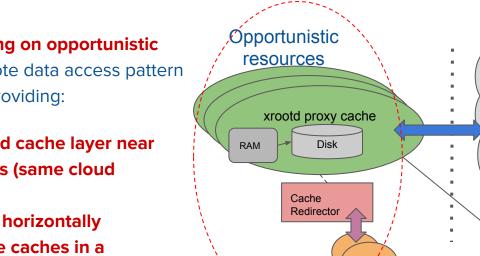
- 1. If in RAM/disk \rightarrow serve from RAM/disk
- 2. Otherwise request data from remote and
 - a. serve it to the client
 - b. write it to disk via write queue (this way data remains in RAM until written to disk)



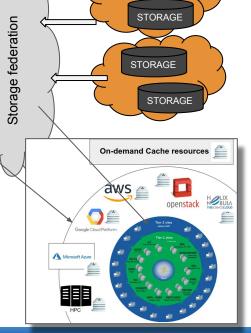


Clustering with xrootd cache redirector

- Through the XrootD redirection is possible to federate caches in a content-aware manner
 - redirect client to the cache that actually have file on disk
- Loadbalancing: If no cache has the requested file, a round robin selection of cache server is used (configurable)



STORAGE


Scenario 1

In case of computing on opportunistic resources the remote data access pattern can be improved providing:

- an on-demand cache layer near cpu resources (same cloud provider)
 - scaling horizontally 0
 - manage caches in a 0 content-aware manner
 - redirect client to the cache that currently have file on disk

automated deployment through: Ansible for infrastructure WN K8s or Mesos/Marathon for container **Opportunistic CMS startd Service** orchestration D. Ciangottini - Distributed and on-demand cache for CMS experiment at LHC - IEEE eScience 2018

resources (2 volunteer users) Ο

- 2k jobs @OpenTelekomCloud (OTC)
- ~150k of users jobs completed reading from Ο standalone cache cluster deployed at OTC

Testing with CMS workflows

Real CMS analysis workflows on cloud

DODAS (*) have been used for:

Scenario 1

- same configuration for setup on different cloud providers

WLCG

XRootD

Federation

Cloud resource provider

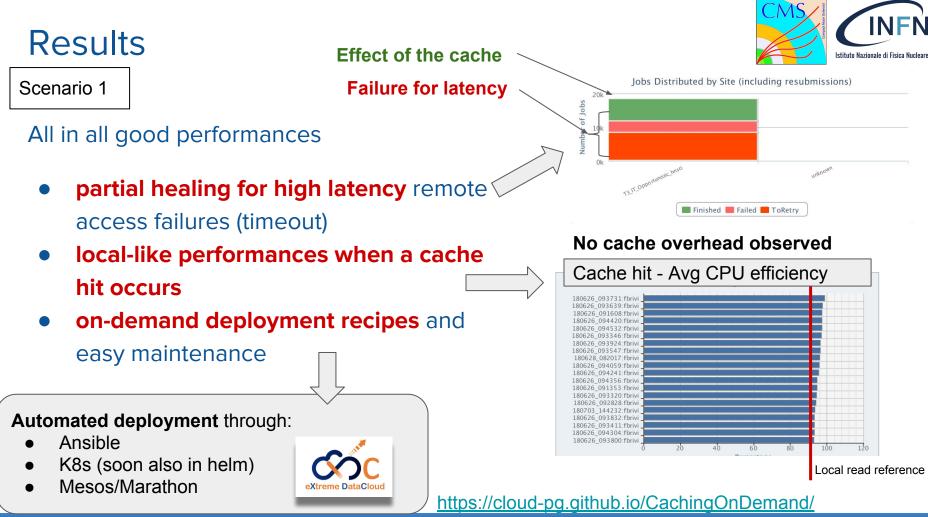
Xcache

Redirector

Opportunistic Storage Service

Ceph/HDFS/IOVolumes/?

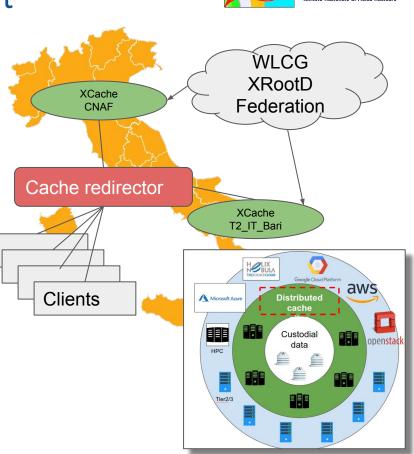
Opportunistic Cache Service


Xcache

WN

Xcache

WN



D. Ciangottini - Distributed and on-demand cache for CMS experiment at LHC - IEEE eScience 2018

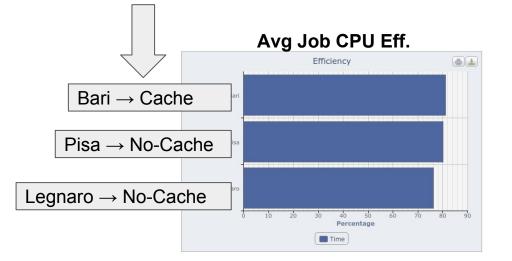
Distributed testbed deployment

Scenario 2

- Deployment a geo-distributed cache:
 - Clients contact the cache redirector
 - Redirector steers client to
 - the cache that actually have file on disk
 - If no cache has the requested file, a round robin selection of cache server is used
- Network of unmanaged storages for hot data
- One line configuration tweak on computing resources allows to seamlessly integrate the distributed cache on CMS workflows

Distributed testbed deployment: testbed

Scenario 2


Current functional test setup:

- CNAF XCache redirector federating 2 servers:
 - CNAF XCache server (5TB)
 - T2 Bari XCache server (10TB)
- Redirecting part of the CMS analysis workflows to contact National redirector
 - based on dataset name requested
- **2 more sites** (Tier2 at Pisa and Legnaro) are planning to join the testbed

Italian XCache federation: functional checks

• Test tasks submitted to T2_IT_Bari with empty cache

• Comparing jobs running at Bari (pointing to cache) with "Ignore locality" ones on other sites

Scenario 2

No penalty in CPU eff in case of empty cache

Performances of jobs **reading from empty cache** is comparable with **remote reading.**

Conclusions and plans

- Two analyzed scenario have been presented:
 - cache for dynamic resources
 - distributed cache layer for HL-LHC data-lake model
- Performance evaluation motivates further activities
 - on-demand deployment and easy maintenance
 - partial healing for high latency remote access failures
 - no penalty in case of empty cache
 - local-like performances when an hit occurs

Work in progress:

- evaluate cache benefits within CMS computing model through simulation
- smart (ML-based) data fetching and request routing based on real-time and historical information
- deployment in production @INFN

In the context of DOMA-Access WG

Thank you

D. Ciangottini - Distributed and on-demand cache for CMS experiment at LHC - IEEE eScience 2018

Backup

D. Ciangottini - Distributed and on-demand cache for CMS experiment at LHC - <u>IEEE eScience 2018</u>

