Science from gravitational-wave data

Archisman Ghosh Nikhef, Amsterdam

7th Nikhef Jamboree Utrecht, 2018 December 18

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Data analysis efforts at Nikhef

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Searches

• Neutron star matter

• Strong field gravity

Cosmology

Searches

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

The LIGO Scientific Collaboration and The Virgo Collaboration (Compiled: 3 December 2018)

Searches

MATCHED FILTERING

COINCIDENT TRIGGERS

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

The LIGO Scientific Collaboration and The Virgo Collaboration (Compiled: 3 December 2018)

Abbott et al. arXiv:1811.12907 [astro-ph.HE]

Event	$m_1/{ m M}_\odot$	$m_2/{ m M}_\odot$	\mathcal{M}/M_{\odot}	$\chi_{ m eff}$	$M_{\rm f}/{ m M}_{\odot}$	a_{f}	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{peak}/(ergs^{-1})$	$d_L/{\rm Mpc}$	z	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01\substack{+0.12\\-0.13}$	$63.1_{-3.0}^{+3.3}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} imes 10^{56}$	430^{+150}_{-170}	$0.09\substack{+0.03 \\ -0.03}$	179
GW151012	$23.3^{+14.0}_{-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.8}$	$0.67\substack{+0.13 \\ -0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} imes 10^{56}$	1060^{+540}_{-480}	$0.21\substack{+0.09\\-0.09}$	1555
GW151226	$13.7\substack{+8.8\\-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18\substack{+0.20 \\ -0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74\substack{+0.07\\-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7}\times10^{56}$	440^{+180}_{-190}	$0.09\substack{+0.04 \\ -0.04}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04\substack{+0.17\\-0.20}$	$49.1^{+5.2}_{-3.9}$	$0.66\substack{+0.08\\-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9}\times10^{56}$	960^{+430}_{-410}	$0.19\substack{+0.07 \\ -0.08}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.0}_{-0.1}$	$3.5^{+0.4}_{-1.3} imes 10^{56}$	320^{+120}_{-110}	$0.07\substack{+0.02 \\ -0.02}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3_{-10.1}^{+9.1}$	$35.7^{+6.5}_{-4.7}$	$0.36^{+0.21}_{-0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81\substack{+0.07\\-0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5}\times10^{56}$	2750^{+1350}_{-1320}	$0.48\substack{+0.19 \\ -0.20}$	1033
GW170809	$35.2^{+8.3}_{-6.0}$	$23.8^{+5.2}_{-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.16}_{-0.16}$	$56.4^{+5.2}_{-3.7}$	$0.70\substack{+0.08 \\ -0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9}\times10^{56}$	990^{+320}_{-380}	$0.20\substack{+0.05 \\ -0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3\substack{+2.9\\-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07\substack{+0.12\\-0.11}$	$53.4\substack{+3.2\\-2.4}$	$0.72\substack{+0.07\\-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5}\times10^{56}$	580^{+160}_{-210}	$0.12\substack{+0.03 \\ -0.04}$	87
GW170817	$1.46\substack{+0.12 \\ -0.10}$	$1.27\substack{+0.09 \\ -0.09}$	$1.186^{+0.001}_{-0.001}$	$0.00^{+0.02}_{-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1 \times 10^{56}$	40^{+10}_{-10}	$0.01\substack{+0.00\\-0.00}$	16
GW170818	$35.5_{-4.7}^{+7.5}$	$26.8\substack{+4.3\\-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09\substack{+0.18\\-0.21}$	$59.8\substack{+4.8\\-3.8}$	$0.67^{+0.07}_{-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7}\times10^{56}$	1020^{+430}_{-360}	$0.20\substack{+0.07 \\ -0.07}$	39
GW170823	$39.6^{\rm +10.0}_{\rm -6.6}$	$29.4^{+6.3}_{-7.1}$	$29.3_{-3.2}^{+4.2}$	$0.08^{+0.20}_{-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71\substack{+0.08\\-0.10}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9}\times10^{56}$	1850^{+840}_{-840}	$0.34^{\rm +0.13}_{\rm -0.14}$	1651

Neutron star matter

Properties of the binary neutron star merger GW170817

The LIGO Scientific Collaboration and The Virgo Collaboration (Compiled 30 May 2018)

GW170817: properties of the neutron star

Figure from: Dietrich et al. (2015)

Waveform systematics for binary neutron star gravitational wave signals: effects of the point-particle baseline and tidal descriptions

Anuradha Samajdar¹ and Tim Dietrich¹ ¹ Nikhef, Science Park, 1098 XG Amsterdam, The Netherlands (Dated: October 10, 2018)

(日)、

э

10 of 20

Strong-field gravity

Tests of General Relativity with GW170817

B. P. Abbott,¹ R. Abbott,¹ T. D. Abbott,² F. Acernese,^{3,4} K. Ackley,⁵ C. Adams,⁶ T. Adams,⁷ P. Addesso,⁸

(a)

э

11 of 20

Tests of general relativity with GW170817

Dipole radiation

Abbott et al. arXiv:1811.00364 [gr-qc]

- Parameterized deviations do not show any departures from GR values.
- "Inverse square law" \rightarrow constraints on extra dimensions.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Probing the nature of compact objects

Are they really black holes, or exotic compact objects mimicking black holes?

Boson stars, dark matter stars, gravastars, shells, wormholes, ...

Different complementary methods probing different regimes:

• Finite size effects during inspiral.

Empirical tests of the black hole no-hair conjecture using gravitational -wave observations

PHYSICAL REVIEW D 98, 104020 (2018)

Gregorio Carullo,^{1,2,4} Laura van der Schaaf,² Lionel London,¹ Peter T. H. Pang,⁴ Ka Wa Tsang,² Otto A. Hannuksela,⁴ Jeroen Meidam,² Michalis Agathos,⁴ Anuradha Samajdar,² Archisman Ghosh,⁴ Tjomie G. F. Li,⁴ Walter Del Pozzo,^{1,6} and Chris Van Den Brocek^{2,7}

イロト イポト イラト イラト

- Ringdown quasinormal modes \rightarrow no-hair conjecture.
- Search for post-merger oscillations or "echoes".

PHYSICAL REVIEW D 98, 024023 (2018)

A morphology-independent data analysis method for detecting and characterizing gravitational wave echoes

Ka Wa Tsang,¹ Michiel Rollier,¹ Archisman Ghosh,¹ Anuradha Samajdar,¹ Michalis Agathos,² Katerina Chatziioannou,³ Vitor Cardoso,⁴ Gaurav Khanna,⁵ and Chris Van Den Broeck^{1/6}

Cosmology

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A standard siren measurement of the Hubble constant from GW170817 without the electromagnetic counterpart

M. FISHBACH,¹ R. GRAY,² I. MAGAÑA HERNANDEZ,³ H. QI,³ A. SUR,⁴ AND MEMBERS OF THE LIGO SCIENTIFIC COLLABORATION AND THE VIRGO COLLABORATION

¹Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
 ²SUPA, University of Glasgow, Glasgow G12 &QQ, United Kingdom
 ³University of Wisconsin-Milwaukee, Mi Jos201, USA
 ⁴Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands

Cosmology: Hubble parameter with GW170817

50 60 70 ar

Independent of any distance ladder!

Abbott et al. Astrophys. J. 848 #2, L12 (2017); LSC-EPO 15 of 20

Abbott et al. Nature 551 #7678, 85-88 (2017)

100 110 120 130

Ho (km s⁻¹ Mpc⁻¹)

*H*₀: future prospects

"Statistical" method in absence of uniquely identified host galaxy.

Schutz (1986); Del Pozzo (2012)

Statistical: incomplete galaxy catalogue

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

LIGO-VIRGO Joint Run Planning Committee

Working schedule for O3

(Public document G1801056-v4, based on G1800889-v7)

Gravitational Wave Detector Network									
Operational Snapshot as of Dec 16, 07:09 UTC									
Detector	Status	Duration							
<u>GEO 600</u>	Observing	2:59							
LIGO Hanford	Observing	1:47							
LIGO Livingston	Observing	1:40							
<u>Virgo</u>	Science	3:07							
KAGRA	Future addition								
Detector status sum	LVC links								