Scintillating Fiber Tracker for LHCb upgrade

Sevda Esen

SC F

Nik

e

17-18 December 2018 Utrecht

Nikhef jamboree

LHCb for beginners

[from Antimatter-Matters]

Fiber Tracker

Fiber Tracker

How it works

(3)

The [expected] Detector

- 10000km fibers
 - \Rightarrow 1024 mats
 - \Rightarrow 128 modules
 - \Rightarrow 12 layers
 - \Rightarrow 3 stations
 - \Rightarrow 1 great tracker
- $340m^2$ sensitive area
- Read out by 256x16 SiPms

stereo angle ± 5°

The [expected] Detector

- 10000km fibers
 - \Rightarrow 1024 mats
 - \Rightarrow 128 modules
 - \Rightarrow 12 layers
 - \Rightarrow 3 stations
 - \Rightarrow 1 great tracker
- \blacksquare 340m² sensitive area
- Read out by 256x16 SiPms

What we contribute at Nikhef

- Module production
- Cooling: development and production
- Quality assurance
- Test beam setup and analysis
- \blacksquare Simulation and reconstruction
- Commissioning and assembly

The Art of Fiber Winding

À

A Fiber Module

Module production

Module straightness

Measure the straightness of the 8 fiber mats glued in a module

Modules ready to go

ð

Readout box

Cooling

À

SiPM Array Positioning

À

Top cover assembly

Quality assurance at every step

One ready, 300 to go!

Box and ship them to CERN!

First shipment of 24 coldboxes arrived at CERN

Testbeam

Putting things together

Computing, Simulation and reconstruction

What we expect [not up to date]

Table 3: Statistical sensitivities of the LHCb upgrade to key observables. For each observable the expected sensitivity is given for the integrated luminosity accumulated by the end of LHC Run 1, by 2018 (assuming 5 fb⁻¹) recorded during Run 2) and for the LHCb Upgrade (50 fb⁻¹). An estimate of the theoretical uncertainty is also given – this and the potential sources of systematic uncertainty are discussed in the text.

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.05	0.025	0.009	~ 0.003
	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (rad)$	0.09	0.05	0.016	~ 0.01
	$A_{\rm sl}(B_s^0)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.18	0.12	0.026	0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.029	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S) \text{ (rad)}$	0.30	0.20	0.04	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	0.20	0.13	0.030	< 0.01
currents	$\tau^{\text{eff}}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	5%	3.2%	0.8%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.14	0.07	0.024	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	$\mathbf{2.4\%}$	$\sim 10\%$
Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	220%	110%	40%	$\sim 5 \%$
Unitarity	$\gamma(B \rightarrow D^{(*)}K^{(*)})$	7°	4°	1.1°	negligible
triangle	$\gamma(B_s^0 \rightarrow D_s^{\mp} K^{\pm})$	17°	11°	2.4°	negligible
angles	$\beta(B^0 \rightarrow J/\psi K_S^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.5	-
CP violation	$\Delta A_{CP} (10^{-3})$	0.8	0.5	0.12	-

What we expect [not up to date]

Table 3: Statistical sensitivities of the LHCb upgrade to key observables. For each observable the expected sensitivity is given for the integrated luminosity accumulated by the end of LHC Run 1 ⁻by 2018 (assuming 5 fb⁻¹ recorded during Run 2) and for the LHCb Upgrade (50 fb⁻¹). An estimate of the theore⁺⁺ rtainty is also given – this and the potential sources of systematic uncertainty are discussed in the text.

Type	Observable	//	7b 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B^0_s \to J^{/_{s'}})$		925	0.009	~ 0.003
	$\phi_s(B^0_s \rightarrow$		15	0.016	~ 0.01
	A _{sl} (0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0)$			0.026	0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 o$.		1	0.029	< 0.02
	$2\beta^{\text{eff}}(B^0 \rightarrow$		n en	0.04	0.02
Right-handed	$\phi^{\mathrm{eff}}_s(B^0_s$			0.030	< 0.01
currents	$ au^{ ext{eff}}(B^0_s o au)$		1515	0.8%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1$		14 C 1	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K$		/	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 0)$		/	0.024	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+)$			$\mathbf{2.4\%}$	$\sim 10\%$
Higgs	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$ (1		5.0	0.19	0.3
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s - \mu^+ \mu^-)$		110%	40%	$\sim 5\%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	1°	4°	1.1°	negligible
triangle	$\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$	17°	11°	2.4°	negligible
angles	$\beta(B^0 \rightarrow J/\psi K_S^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.5	-
$C\!P$ violation	$\Delta A_{CP} (10^{-3})$	0.8	0.5	0.12	-

À

(22

Let's find out together..

Observable	Current LHCb	LHCb 2025	
EW Penguins			
$\overline{R_K (1 < q^2 < 6 \mathrm{GeV}^2 c^4)}$	0.1 [274]	0.025	
R_{K^*} $(1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [275]	0.031	
$R_{\phi}, R_{pK}, R_{\pi}$	-	0.08, 0.06, 0.18	
CKM tests			
$\overline{\gamma}$, with $B_0^0 \to D_0^+ K^-$	$\binom{+17}{22}^{\circ}$ [136]	4°	
γ , all modes	$\binom{-2.2}{5.0}^{\circ}$ [167]	1.5°	
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 [609]	0.011	
ϕ_s , with $B^0_s \to J/\psi\phi$	49 mrad [44]	14 mrad	
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	35 mrad	
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	39 mrad	
$a_{\rm sl}^s$	33×10^{-4} [211]	$10 imes 10^{-4}$	
$ V_{ub} / V_{cb} $	6% [201]	3%	
$B^0, B^0 \rightarrow \mu^+ \mu^-$			Leptons
$\frac{\overline{\mathcal{B}}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0 \to \mu^+ \mu^-)} \mathcal{B}(B^0 \to \mu^+ \mu^-)$	90% [264]	34%	εμτ, ν _e ν _μ ν _τ
$\mathcal{Z}(\mathcal{D}^{-}, \mu^{-}\mu^{-})/\mathcal{Z}(\mathcal{D}_{s}^{-}, \mu^{-}\mu^{-})$	22% [264]	8%	
$S_{\mu\nu}$		_	
$\frac{b \rightarrow c \epsilon}{P(D^*)}$	0.096 [915-917]	0.0079	Photon Weak
R(D) P(I/ab)	0.020 [215, 217]	0.0072	Bosons
$R(J/\psi)$	0.24 [220]	0.071	
Charm			
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [613]	1.7×10^{-4}	Higgs Boson
$A_{\Gamma} \ (\approx x \sin \phi)$	2.8×10^{-4} [240]	4.3×10^{-5}	
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [228]	3.2×10^{-4}	
$x \sin \phi$ from multibody decays		$(K3\pi) 4.0 \times 10^{-5}$	

Quarks

Gluons

Ā

THE END

NO BACKUP<u>S, NO</u> FAILOVER, NO <u>Cl</u>ue

LEIS HIT memegenerator.net

BARRYON K.

