Time dependent CP violation of B^{0} mesons
Katya Govorkova

Nik]hef
Jamboree@Utrecht
17 December 2018

LHCb experiment

Inside the VeLo

pp collision in VeLo

pp collision in VeLo

Nik hef LHCb

Nik hef LHCb

Nik hef LHCb

B_{5}-meson oscillations

The $B_{s} \rightarrow J / \psi \phi$ decay

The $B_{s} \rightarrow J / \psi \phi$ decay

CP Weak phase

-M69k buga6

Two components: CP-even and CP-odd

$$
\mathrm{CP}|J / \psi \phi\rangle_{l}=(-1)^{l}|J / \psi \phi\rangle_{l}
$$

Four amplitudes: $A_{\|} A_{\perp} A_{0}$ and A_{S}

$$
\frac{d^{4} \Gamma(t)}{d m_{K K}^{2} d \cos \theta_{K} d \cos \theta_{l} d \phi}=\sum_{k=1}^{10} N_{k} h_{k}(t) f_{k}\left(\theta_{K}, \theta_{l}, \phi\right)
$$

$$
h_{k}(t)=\frac{3}{4 \pi} e^{-\Gamma t}\left\{a_{k} \cosh \frac{\Delta \Gamma t}{2}+b_{k} \sinh \frac{\Delta \Gamma t}{2}+c_{k} \cos (\Delta m t)+d_{k} \sin (\Delta m t)\right\}
$$

	f_{k}	N_{k}	a_{k}	b_{k}	c_{k}	d_{k}																
1	$c_{K}^{2} s_{l}^{2}$	$\left\|A_{0}\right\|^{2}$	$\frac{1}{2}\left(1+\left\|\lambda_{0}\right\|^{2}\right)$	$-\left\|\lambda_{0}\right\| \cos \left(\rho_{0}\right)$	$\frac{1}{2}\left(1-\left\|\lambda_{0}\right\|^{2}\right)$	$\left\|\lambda_{0}\right\| \sin \left(\wp_{0}\right)$																
2	$\frac{1}{2} s_{K}^{2}\left(1-c_{\phi}^{2} s_{l}^{2}\right)$	$\left.\left\|A_{\\|}\right\|\right\|^{2}$	$\frac{1}{2}\left(1+\left\|\lambda_{\\|}\right\|{ }^{2}\right)$	$-\left\|\lambda_{\\|}\right\| \cos \left(\varnothing^{\text {) }}\right.$	$\frac{1}{2}\left(1-\left\|\lambda_{\\|}\right\|{ }^{2}\right)$	$\left\|\lambda_{\\| \mid}\right\| \sin ()^{\text {) }}$																
3	$\frac{1}{2} s_{K}^{2}\left(1-s_{\phi}^{2} s_{l}^{2}\right)$	$\left\|A_{\perp}\right\|^{2}$	$\frac{1}{2}\left(1+\left\|\lambda_{\perp}\right\|^{2}\right)$	$\left\|\lambda_{\perp}\right\| \cos \left(\square_{\perp}\right)$	$\frac{1}{2}\left(1-\left\|\lambda_{\perp}\right\|^{2}\right)$	$-\left\|\lambda_{\perp}\right\| \sin \left(\rho_{\perp}\right)$																
4	$s_{K}^{2} s_{l}^{2} s_{\phi} c_{\phi}$	$\left\|A_{\perp} A_{\\|}\right\|$	$\begin{aligned} & \frac{1}{2}\left[\sin \left(\delta_{\perp}-\delta_{\\|}\right)-\left\|\lambda_{\perp} \lambda_{\\|}\right\|\right. \\ & \left.\sin \left(\delta_{\perp}-\delta_{\\|}-\phi_{\perp}+o_{\\|}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{1}{2}\left[\left\|\lambda_{\perp}\right\| \sin \left(\delta_{\perp}-\delta_{\\| \mid}-\phi_{\perp}\right)\right. \\ & \left.+\left\|\lambda_{\\|}\right\| \sin \left(\delta_{\\| \mid}-\delta_{\perp}-\theta_{\\|}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{1}{2}\left[\sin \left(\delta_{\perp}-\delta_{\\|}\right)+\left\|\lambda_{\perp} \lambda_{\\|}\right\|\right. \\ & \left.\sin \left(\delta_{\perp}-\delta_{\\|}-\delta_{\perp}+\phi_{\\|}\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{1}{2}\left[\left\|\lambda_{\perp}\right\| \cos \left(\delta_{\perp}-\delta_{\\|}-\phi_{\perp}\right)\right. \\ & \left.+\left\|\lambda_{\\|}\right\| \cos \left(\delta_{\\| \mid}-\delta_{\perp}-\theta^{\prime}\right)\right] \end{aligned}$																
5	$\sqrt{2} s_{K} c_{K} s_{l} l_{l} c_{\phi}$	$\left\|A_{0} A_{\\|}\right\|$	$\begin{aligned} & \frac{1}{2}\left[\cos \left(\delta_{0}-\delta_{\\|}\right)+\left\|\lambda_{0} \lambda_{\\|}\right\|\right. \\ & \left.\left.\cos \left(\delta_{0}-\delta_{\\|}-\phi_{0}+\right)^{\prime}\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{1}{2}\left[\left\|\lambda_{0}\right\| \cos \left(\delta_{0}-\delta_{\\|}-\theta_{0}\right)\right. \\ & \left.+\left\|\lambda_{\\|}\right\| \cos \left(\delta_{\\| \mid}-\delta_{0}-\phi_{1}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{1}{2}\left[\cos \left(\delta_{0}-\delta_{\\|}\right)-\left\|\lambda_{0} \lambda_{\\|}\right\|\right. \\ & \left.\left.\cos \left(\delta_{0}-\delta_{\\|}-\phi_{0}+\right)^{\prime}\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{1}{2}\left[\left\|\lambda_{0}\right\| \sin \left(\delta_{0}-\delta_{\\|}-\rho_{0}\right)\right. \\ & \left.+\left\|\lambda_{\\|}\right\| \sin \left(\delta_{\\|}-\delta_{0}-\phi_{\\|}\right)\right] \end{aligned}$																
6	$-\sqrt{2} s_{K} c_{K} s_{l} c_{l} s_{\phi}$	$\left\|A_{0} A_{\perp}\right\|$	$\begin{aligned} & -\frac{1}{2}\left[\sin \left(\delta_{0}-\delta_{\perp}\right)-\left\|\lambda_{0} \lambda_{\perp}\right\|\right. \\ & \left.\sin \left(\delta_{0}-\delta_{\perp}-\phi_{0}+\sigma_{\perp}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{1}{2}\left[\left\|\lambda_{0}\right\| \sin \left(\delta_{0}-\delta_{\perp}-\phi_{0}\right)\right. \\ & \left.+\left\|\lambda_{\perp}\right\| \sin \left(\delta_{\perp}-\delta_{0}-\phi_{\perp}\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{1}{2}\left[\sin \left(\delta_{0}-\delta_{\perp}\right)+\left\|\lambda_{0} \lambda_{\perp}\right\|\right. \\ & \left.\sin \left(\delta_{0}-\delta_{\perp}-\phi_{0}+\sigma_{\perp}\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{1}{2}\left[\left\|\lambda_{0}\right\| \cos \left(\delta_{0}-\delta_{\perp}-\rho_{0}\right)\right. \\ & \left.+\left\|\lambda_{\perp}\right\| \cos \left(\delta_{\perp}-\delta_{0}-\phi_{\perp}\right)\right] \end{aligned}$																
7	$\frac{1}{3} s_{l}^{2}$	$\left\|A_{S}\right\|^{2}$	$\frac{1}{2}\left(1+\left\|\lambda_{S}\right\|^{2}\right)$	$\left\|\lambda_{s}\right\| \cos \left(\phi_{s}\right)$	$\frac{1}{2}\left(1-\left\|\lambda_{S}\right\|^{2}\right)$	$-\left\|\lambda_{\mathrm{S}}\right\| \sin \left(\rho_{\mathrm{s}}\right)$																
8	$\frac{2}{\sqrt{6}} s_{K} s_{l} c_{l} c_{\phi}$	$\left\|A_{\mathrm{S}} A_{\\|}\right\|$	$\begin{aligned} & \frac{1}{2}\left[\cos \left(\delta_{S}-\delta_{\\|}\right)-\left\|\lambda_{S} \lambda_{\\|}\right\|\right. \\ & \left.\left.\cos \left(\delta_{S}-\delta_{\\|}-\phi_{S}+\right)^{\prime}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{1}{2}\left[\left\|\lambda_{S}\right\| \cos \left(\delta_{S}-\delta_{\\|}-\phi_{S}\right)\right. \\ & \left.-\left\|\lambda_{\\|}\right\| \cos \left(\delta_{\\|}-\delta_{S}-\phi_{\\|}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{1}{2}\left[\cos \left(\delta_{S}-\delta_{\\|}\right)+\left\|\lambda_{S} \lambda_{\\|}\right\|\right. \\ & \left.\cos \left(\delta_{S}-\delta_{\\|}-\phi_{S}+\phi_{\\|}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{1}{2}\left[\left\|\lambda_{S}\right\| \sin \left(\delta_{S}-\delta_{\\| \mid}-\phi_{S}\right)\right. \\ & \left.-\left\|\lambda_{\\| \mid}\right\| \sin \left(\delta_{\\| \mid}-\delta_{S}-\phi_{\\|}\right)\right] \end{aligned}$																
9	$-\frac{2}{\sqrt{6}} s_{K} s_{l} C_{l} s_{\phi}$	$\left\|A_{S} A_{\perp}\right\|$	$\begin{aligned} & -\frac{1}{2}\left[\sin \left(\delta_{S}-\delta_{\perp}\right)+\left\|\lambda_{S} \lambda_{\perp}\right\|\right. \\ & \left.\sin \left(\delta_{S}-\delta_{\perp}-\phi_{S}+\phi_{\perp}\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{1}{2}\left[\left\|\lambda_{S}\right\| \sin \left(\delta_{S}-\delta_{\perp}-\phi_{S}\right)\right. \\ & \left.-\left\|\lambda_{\perp}\right\| \sin \left(\delta_{\perp}-\delta_{S}-\phi_{\perp}\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{1}{2}\left[\sin \left(\delta_{S}-\delta_{\perp}\right)-\left\|\lambda_{S} \lambda_{\perp}\right\|\right. \\ & \left.\sin \left(\delta_{S}-\delta_{\perp}-\phi_{S}+\phi_{\perp}\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{1}{2}\left[-\left\|\lambda_{S}\right\| \cos \left(\delta_{S}-\delta_{\perp}-\phi_{S}\right)\right. \\ & \left.+\left\|\lambda_{\perp}\right\| \cos \left(\delta_{\perp}-\delta_{S}-\phi_{\perp}\right)\right] \end{aligned}$																
10	$\frac{2}{\sqrt{3}} c_{K} s_{l}^{2}$	\| $A_{\text {S }} A_{0} \mid$	$\begin{aligned} & \frac{1}{2}\left[\cos \left(\delta_{S}-\delta_{0}\right)-\left\|\lambda_{S} \lambda_{0}\right\|\right. \\ & \left.\cos \left(\delta_{S}-\delta_{0}-\phi_{S}+\phi_{0}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{1}{2}\left[\left\|\lambda_{S}\right\| \cos \left(\delta_{S}-\delta_{0}-\phi_{S}\right)\right. \\ & \left.-\left\|\lambda_{0}\right\| \cos \left(\delta_{0}-\delta_{S}-\phi_{0}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{1}{2}\left[\cos \left(\delta_{S}-\delta_{0}\right)+\left\|\lambda_{S} \lambda_{0}\right\|\right. \\ & \left.\cos \left(\delta_{S}-\delta_{0}-\phi_{S}+\phi_{0}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{1}{2}\left[\left\|\lambda_{S}\right\| \sin \left(\delta_{S}-\delta_{0}-\phi_{S}\right)\right. \\ & \left.-\left\|\lambda_{0}\right\| \sin \left(\delta_{0}-\delta_{S}-\varphi_{0}\right)\right] \end{aligned}$																

$$
\begin{gathered}
\frac{d^{4} \Gamma(t)}{d m_{K K}^{2} d \cos \theta_{K} d \cos \theta_{l} d \phi}=\sum_{k=1}^{10} N_{k} h_{k}(t) f_{k}\left(\theta_{K}, \theta_{l}, \phi\right) \\
h_{k}(t)=\frac{3}{4 \pi} e^{-\Gamma t}\left\{a_{k} \cosh \frac{\Delta \Gamma t}{2}+b_{k} \sinh \frac{\Delta \Gamma t}{2}+c_{k} \cos (\Delta m t)+d_{k} \sin (\Delta m t)\right\}
\end{gathered}
$$

φ_{s}

Measurement of φ_{s}

Measurement of φ_{s}

If $\varphi_{s}{ }^{\exp } \not \approx \varphi_{s}{ }^{\text {SM }}$ New Physics!

Decay time

Nik hef LHCb

Decay time

 Nik] hef LHCh

winger Med

(e)

(${ }^{\text {B }}$ (®)

© (®ib

Flavour tagging

(6) ${ }^{3}$

Flavour tagging

?
 ? B

μ^{+}

winger Med

(e)

© (®ib

© (®ib

\bar{b}

?

Flavour tagging

The life of analyst

The life of analyst

$$
\begin{aligned}
& \text { LHCb result based on } 1 \mathrm{fb}^{-1} \\
& \phi_{s}=0.00 \pm 0.10 \text { (stat.) } \pm 0.02 \text { (syst.) }
\end{aligned}
$$

What's next?

The life of analyst

Backup

Run 1
$\mathrm{m}\left(\mathrm{J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}\right) \mathrm{w} / \mathrm{O}$ PV constraint
Fit with Ipatia function

Run 2
$\mathrm{m}\left(\mathrm{J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}\right) \mathrm{W} / \mathrm{PV}$ constraint
Per-event mass error as conditional observable Additional fit component for $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$

Signal model: Double-sided Crystal Ball function (CB2) with per-event mass error as a conditional observable Quadratic dependence on the per-event mass error: $\sigma=s_{1} \sigma_{i}+s_{2} \sigma_{i}^{2}\left(s_{1} \sim 0.8 ; s_{2} \sim 0.05\right)$

- Tails of the CB2 and scale factors are fixed from the fit to MC
- Fit in $6 \mathrm{~m}\left(\mathrm{~K}^{+} \mathrm{K}^{-}\right)$bins $[990,1008,1016,1020,1024,1032,1050] \mathrm{MeV} / \mathrm{c}^{2}$

Background: Exponential for the combinatorial and gaussian for the $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$contribution

Projections of the total fit in 3 bins of $\cos \left(\theta_{\mu}\right)$
Using the per-event mass error as a conditional observable accounts for the observed correlation between the mass shape and one of the helicity angles

Run1:

Trigger flow evolution

Run1:

Run2:

Trigger flow evolution

Run1:

Run2:

Trigger flow evolution

Run1:

Run3:

Raw data
 Persist all the raw banks in the event
 Typical event size ~ 60 kB

Turbo and Turbo++
available from 2015
Persist triggered candidate
Typical event size ~ 15 kB
(not enough information for many analyses)
Persist triggered candidate $+$ all reconstructed objects in the event Typical event size ~ 70 kB

HIt2CharmHadD02KmPipTurbo (ID: 421)
Direct output of one of the trigger lines in Turbo stream

Measurement of J / ψ production cross-section at 13 TeV [JHEP 10 (2015) 172]

- Analysis finds ~ 10^{6} candidates directly from the trigger
- Mass resolution $12 \mathrm{MeV} / \mathrm{c}^{2}$ consistent with best previously achieved resolution
- Presented at EPS conference 18 days after data were taken

TurboSP

Choose what to persist:

selectively persist raw information and/or reconstructed objects
Typical event size depends on the requirements ~ 15-70 kB

Already successfully operates in the trigger!

TurboSP is considered as the primary data flow model for the planned LHCb upgrade in Run 3

Current work: Adapting selection of $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$for TurboSP

