

Time dependent CP violation of B^o_s mesons

Katya Govorkova

Jamboree@Utrecht 17 December 2018

LHCb experiment

Nikhef

LHCb experiment

Katya Govorkova

Inside the VeLo

Katya Govorkova

Inside the VeLo

pp collision in VeLo

pp collision in VeLo

Katya Govorkova

Jamboree@Utrecht

Nik hef LHCb

The $B_s \rightarrow J/\psi \phi$ decay

Nikhef

The B_s $\rightarrow J/\psi \phi$ decay

The $B_s \rightarrow J/\psi \phi$ decay

Nikhef

The $B_s \rightarrow J/\psi \phi$ decay

Katya Govorkova

CP violation in P2VV

Nikhef

CP violation in P2VV

Nik hef

Nikhef

Measurement of ϕ_{s}

		$\frac{d^4\Gamma(t)}{dm_{KK}^2 d\cos\theta_K d$	$\frac{10}{\cos \theta_l d\phi} = \sum_{k=1}^{10} N$	$V_k h_k(t) f_k(heta_K, heta_l,\phi)$)
$h_k(t)$	$=\frac{3}{4\pi}$	$e^{-\Gamma t} \left\{ \frac{a_k \cosh \frac{\Delta \Gamma}{2}}{2} \right\}$	$\frac{\Delta \Gamma t}{2} + b_k \sinh \frac{\Delta \Gamma t}{2}$	$+ c_k \cos(\Delta m t) +$	$d_k \sin(\Delta m t) \bigg\}$
f_k	N_k	a_k	b_k	c_k	d_k
$c_K^2 s_l^2$	$ A_0 ^2$	$rac{1}{2}(1+ \lambda_0 ^2)$	$- \lambda_0 \cos(\phi_0)$	$rac{1}{2}(1- \lambda_0 ^2)$	$ \lambda_0 \sin(\phi_0)$
$\frac{1}{2}s_{K}^{2}(1-c_{\phi}^{2}s_{l}^{2})$	$ A_{ } ^2$	$rac{1}{2}(1+ \lambda_{ } ^2)$	$- \lambda_{ } \cos(\phi_{ })$	$rac{1}{2}(1- \lambda_{ } ^2)$	$ \lambda_{ } \sin(\phi_{ })$
$\frac{1}{2}s_{K}^{2}(1-s_{\phi}^{2}s_{l}^{2})$	$ A_{\perp} ^2$	$\frac{1}{2}(1+ \lambda_{\perp} ^2)$	$ \lambda_{\perp} \cos(\phi_{\perp})$	$\frac{1}{2}(1- \lambda_{\perp} ^2)$	$- \lambda_{\perp} \sin(\phi_{\perp})$
$s_K^2 s_l^2 s_\phi c_\phi$	$ A_{\perp}A_{ } $	$\frac{1}{2} \sin(\delta_{\perp} - \delta_{ }) - \lambda_{\perp}\lambda_{ } $	$\frac{1}{2} \left \lambda_{\perp} \right \sin(\delta_{\perp} - \delta_{ } - \phi_{\perp})$	$\frac{1}{2} \sin(\delta_{\perp} - \delta_{ }) + \lambda_{\perp}\lambda_{ } $	$-rac{1}{2}\left \lambda_{\perp} \cos(\delta_{\perp} - \delta_{ } - \phi_{\perp}) ight.$
		$\sin(\delta_{\perp} - \delta_{ } - \phi_{\perp} + \phi_{ })$	$+ \lambda_{ } \sin(\delta_{ }-\delta_{\perp}-\phi_{ })$	$\sin(\delta_{\perp} - \delta_{ } - \phi_{\perp} + \phi_{ }) \bigg]$	$+ \lambda_{ } \cos(\delta_{ }-\delta_{\perp}-\phi_{ })\Big]$
$\sqrt{2}s_K c_K s_l c_l c_{\phi}$	$ A_0A_{ } $	$\frac{1}{2} \left[\cos(\delta_0 - \delta_{ }) + \lambda_0 \lambda_{ } \right]$	$-\frac{1}{2} \left[\lambda_0 \cos(\delta_0 - \delta_{ } - \phi_0) \right]$	$\frac{1}{2} \left[\cos(\delta_0 - \delta_{ }) - \lambda_0 \lambda_{ } \right]$	$-rac{1}{2}\Big[\lambda_0 \sin(\delta_0-\delta_{ }-\phi_0)$
		$\cos(\delta_0 - \delta_{ } - \phi_0 + \phi_{ })$	$+ \lambda_{ } \cos(\delta_{ }-\delta_0-\phi_{ })$	$\cos(\delta_0 - \delta_{ } - \phi_0 + \phi_{ })$	$+ \lambda_{ } \sin(\delta_{ }-\delta_0-\phi_{ })$
$-\sqrt{2}s_K c_K s_l c_l s_\phi$	$ A_0A_\perp $	$-\frac{1}{2}\left[\sin(\delta_0-\delta_{\perp})- \lambda_0\lambda_{\perp} \right]$	$rac{1}{2}\left[\lambda_0 \sin(\delta_0-\delta_\perp-\phi_0) ight]$	$-\frac{1}{2}\left[\sin(\delta_0-\delta_{\perp})+ \lambda_0\lambda_{\perp} \right]$	$-rac{1}{2}\left[\lambda_0 \cos(\delta_0-\delta_\perp-\phi_0) ight.$
		$\sin(\delta_0 - \delta_\perp - \phi_0 + \phi_\perp)$	$+ \lambda_{\perp} \sin(\delta_{\perp}-\delta_{0}-\phi_{\perp})\Big]$	$\sin(\delta_0 - \delta_\perp - \phi_0 + \phi_\perp)$	$+ \lambda_{\perp} \cos(\delta_{\perp}-\delta_{0}-\phi_{\perp})\Big]$
$\frac{1}{3}s_l^2$	$ A_{\rm S} ^2$	$rac{1}{2}(1+ \lambda_{ m S} ^2)$	$ \lambda_{ m S} \cos(\phi_{ m S})$	$rac{1}{2}(1- \lambda_{ m S} ^2)$	$- \lambda_{ m S} \sin(\phi_{ m S})$
$\frac{2}{\sqrt{6}}s_Ks_lc_lc_\phi$	$ A_{\mathrm{S}}A_{ } $	$\frac{1}{2}\left[\cos(\delta_S-\delta_{ })- \lambda_S\lambda_{ } ight]$	$\frac{1}{2}\left[\lambda_S \cos(\delta_S - \delta_{ } - \phi_S) \right]$	$\frac{1}{2}\left[\cos(\delta_S-\delta_{ })+ \lambda_S\lambda_{ } ight.$	$\frac{1}{2}\left[\lambda_S \sin(\delta_S-\delta_{ }-\phi_S) ight]$
		$\cos(\delta_S - \delta_{ } - \phi_S + \phi_{ }) ight]$	$- \lambda_{ } \cos(\delta_{ }-\delta_S-\phi_{ })$	$\cos(\delta_S - \delta_{ } - \phi_S + \phi_{ })$	$- \lambda_{ } \sin(\delta_{ }-\delta_S-\phi_{ })\Big]$
$-\frac{2}{\sqrt{6}}s_Ks_lc_ls_\phi$	$ A_{\rm S}A_{\perp} $	$-\frac{1}{2}\left[\sin(\delta_S-\delta_{\perp})+ \lambda_S\lambda_{\perp} \right]$	$-\frac{1}{2}\left[\lambda_S \sin(\delta_S-\delta_{\perp}-\phi_S)\right]$	$-\frac{1}{2}\left[\sin(\delta_S - \delta_{\perp}) - \lambda_S \lambda_{\perp} \right]$	$-\frac{1}{2}\left[- \lambda_S \cos(\delta_S - \delta_\perp - \phi_S) ight.$
		$\sin(\delta_S-\delta_\perp-\phi_S+\phi_\perp) igg]$	$- \lambda_{\perp} \sin(\delta_{\perp}-\delta_{S}-\phi_{\perp}) ight)$	$\sin(\delta_S-\delta_\perp-\phi_S+\phi_\perp) igg]$	$+ \lambda_{\perp} \cos(\delta_{\perp}-\delta_{S}-\phi_{\perp})igg]$
$\frac{2}{\sqrt{3}}c_K s_l^2$	$ A_{\rm S}A_0 $	$\frac{1}{2} \left[\cos(\delta_S - \delta_0) - \lambda_S \lambda_0 \right]$	$\frac{1}{2}\left[\lambda_S \cos(\delta_S-\delta_0-\phi_S) ight]$	$\frac{1}{2} \left[\cos(\delta_S - \delta_0) + \lambda_S \lambda_0 \right]$	$\frac{1}{2}\left[\lambda_S \sin(\delta_S-\delta_0-\phi_S) ight]$
		$\cos(\delta_S - \delta_0 - \phi_S + \phi_0)$	$- \lambda_0 \cos(\delta_0-\delta_S-\phi_0)$	$\cos(\delta_S - \delta_0 - \phi_S + \phi_0) \bigg]$	$- \lambda_0 \sin(\delta_0-\delta_S-\phi_0) $

Nik hef LHCb

1

3

4

5

7

8

9

10

Katya Govorkova

Measurement of ϕ_{s}

Jamboree@Utrecht

Nik hef

Katya Govorkova

17 December 2018

Nik hef LHCb

Measurement of ϕ_s

Nikhef

Jamboree@Utrecht

Nikhef LHCb

Measurement of ϕ_{s}

Jamboree@Utrecht

Nik hef LHCb

Measurement of ϕ_{s}

Nik[hef

Jamboree@Utrecht

Nik hef

Decay time

Decay time

Decay time

Katya Govorkova

Nikhef

Nikhef

Nikhef LHCb

Selection

Selection

Nik hef LHCb

Nik hef

Nik hef LHCb

Nik hef LHCb

LHCb result based on 1 fb⁻¹ $\phi_s = 0.00 \pm 0.10 \, ({\rm stat.}) \pm 0.02 \, ({\rm syst.})$

Jamboree@Utrecht

Nikhef

Latest result by LHCb based on 3fb⁻¹ [PRL 114, 041801] $\phi_s = -0.058 \pm 0.049 \pm 0.006 \text{ rad}$

Nik hef LHCb

Nik hef LHCb

Nikhef HCp

Nikhef LHCb group 2018

Katya Govorkova

Nikhef LHCb group 2018

Katya Govorkova

Mass fit

Run 1 m(J/ψ K⁺K⁻) w/o PV constraint

- Fit with Ipatia function

_

Nik hef

m(J/ψ K⁺K⁻) w/ PV constraint

Per-event mass error as conditional observable

Run 2

Nik h

Additional fit component for $B^{\circ} \rightarrow J/\psi K^{+}K^{-}$

Signal model: Double-sided Crystal Ball function (CB2) with per-event mass error as a conditional observable Quadratic dependence on the per-event mass error: $\sigma = s_1\sigma_i + s_2\sigma_i^2$ ($s_1\sim 0.8$; $s_2\sim 0.05$)

- Tails of the CB2 and scale factors are fixed from the fit to MC
- Fit in 6 m(K⁺K⁻) bins [990, 1008, 1016, 1020, 1024, 1032, 1050] MeV/*c*²

Background: Exponential for the combinatorial and gaussian for the $B^{\circ} \rightarrow J/\psi K^{+}K^{-}$ contribution

Mass fit

Projections of the total fit in 3 bins of $cos(\theta_{\mu})$

Using the per-event mass error as a conditional observable accounts for the observed correlation between the mass shape and one of the helicity angles

Nik[hef

Run1:

Run1:

Run2:

Run1:

Run2:

Run1:

Run3:

Turbo species

tracks from another PV

other tracks from

triggered PV

Nik

Nik hef

Katya Govorkova

Turbo performance

Hlt2CharmHadD02KmPipTurbo (ID: 421)

Nik

•

Turbo performance

LHCD

Nikhef

Turbo Selective Persistence (SP)

TurboSP is considered as the primary data flow model for the planned LHCb upgrade in Run 3

Current work: Adapting selection of $B^{\circ}_{s} \rightarrow J/\psi \ K^{+}K^{-}$ for TurboSP

Katya Govorkova

Jamboree@Utrecht

Nik