

Search for lepton-flavour-violating Z decays with the ATLAS detector

18-Dec-2018 Nikhef Jamboree

Wing Sheung Chan (Terry), Nikhef

What is lepton flavour violation (LFV)?

Flavour symmetry is not a fundamental symmetry in the Standard Model

Indeed, fermions do change flavour:

- Quark mixing has been observed (CKM matrix)
- Neutrino mixing has been observed (PMNS matrix)

• How about charged lepton?

- Possible in the SM (with neutrino oscillations), but with vanishingly small branching ratios ($\ll 10^{-50}$) → Impossible to detect
- Some BSM theories predict much higher rates
 → Unambiguous signal of BSM phenomena
- Not observed yet \rightarrow Keep searching!

Why LFV Z decays?

$^{\circ}$ LHC is basically a Z factory

° cross section × integrated luminosity (Run-2) ≈ 60 nb × 160 fb⁻¹ ≈ 10^{10}

- $^{\rm o}$ Also, Z boson properties have been very well measured
 - which allows more precise analysis
- $^{\rm o}$ Lepton-flavour-violating Z boson decays
 - \circ In the SM, ${
 m BR}(Z o \ell \ell') \sim O(10^{-54})$
 - BSM scenarios with much higher LFV BR predicted, e.g.:
 - Supersymmetry
 - Extended gauge
 - Heavy neutrino

• In particular, we (Nikhef) focus on $Z \rightarrow e\tau/\mu\tau$ searches in ATLAS

• ($Z \rightarrow e\mu$ has more stringent indirect limits from low-energy $\mu \rightarrow e$ experiments)

Unique features of the $Z \rightarrow \ell \tau$ signal events

- Resonance at Z rest mass (with E^{miss} considered)
- Z is heavy \rightarrow boosted τ and ℓ
- $\ell \tau$ pair: opposite-sign charges; almost back-to-back in transverse plane
- $E^{\rm miss}$ almost collinear with $au_{
 m vis}$ and almost back-to-back with ℓ

Major backgrounds

 $\circ Z \to \tau \tau (\to \ell)$

- \circ One τ decays leptonically
- \circ Both au decays contribute to the total $E^{
 m miss}$
 - \rightarrow Partially cancel each other
 - \rightarrow Total E^{miss} can align with ℓ instead of with τ_{vis}

$\circ W(\rightarrow \ell \nu) + jets$

- \circ Jets mis-identified as hadronically-decaying $\pmb{\tau}$ ("fakes")
- $E^{\text{miss}}(v)$ from W decay does not align with the fake τ

• $Z \rightarrow \ell \ell (\rightarrow \tau)$ • e/μ mis-identified as τ • No E^{miss} expected

 \rightarrow Visible invariant mass $m_{\rm vis} \sim m_Z$

Event selection $-Z \rightarrow \tau \tau$ and W+jets rejections

Mass spectrum fitting (Run-1 strategy)

- Even after the event selection, a lot of backgrounds still remain
- $\,^{\circ}\,\mbox{The}\,\ell\tau$ invariant mass spectrum provides us some discriminating power
 - $Z \rightarrow \tau \tau$ peaks *lower* than signal (more E^{miss})
 - $\circ Z \rightarrow \ell \ell$ peaks *higher* than signal (no E^{miss})
 - W+jets/QCD fakes are more flat and has no clear peak (not resonance)
- Fitting the spectrum allows us to measure/ constrain $BR(Z \rightarrow \ell \tau)$:

Aren't we a bit

oo heavy?

• Run-1 95% CL limits: BR $(Z \rightarrow e\tau) < 4.7 \times 10^{-5}$ BR $(Z \rightarrow \mu\tau) < 1.7 \times 10^{-5}$

So, limit obtained, end of the story?

• Not yet (as you can guess from the slide numbers)

- As we gather more and more data (now with LHC Run-2, future with HL-LHC), we are not just sitting there waiting
- Many ideas for improvement were studied; most fruitful ones include:
 - 1. Exploiting the data with neural network
 - 2. Rejecting $Z \rightarrow \ell \ell$ effectively using track measurements

1. Exploiting the data with neural networks

- Many recent developments in neural networks (thanks to industrial usage)
 → we are making use of it!
- Use NN to create a kinematic discriminant
- Our NN classifiers:
 - Software: KERAS on top of TENSORFLOW
 - Input: 4-momenta of ℓ , $\tau_{\rm vis}$ and $E_{\rm T}^{\rm miss}$ (and variables derived from them)
 - Output: scores to discriminate signal from $Z \rightarrow \tau \tau$, W+jets and $Z \rightarrow \ell \ell$
 - Hyperparameters are optimised by a grid search
- By fitting the NN output, we gained ~50% sensitivity compared to conventional mass fitting!

2. $Z \rightarrow \ell \ell$ rejections using track measurements

- $\circ Z \rightarrow \ell \ell$ can be suppressed by rejecting events with $m_{
 m vis} \sim m_Z$
- ° But there is more to it
 - \circ Normally, $p(\tau_{
 m vis} \text{ candidate})$ is measured by calorimeters only
 - 1. *Electrons/Muons* can emit *Bremsstrahlung radiations* tracker measurement: $p_{reco} < p_{truth}$ calorimeter measurement: $p_{reco} \approx p_{truth}$
 - 2. Muons detected by tracker but not calorimeters
 - → fake taus with random energy deposits tracker measurement: $p_{reco} \approx p_{truth}$ calorimeter measurement: random p_{reco}

• Allow very specific cuts against $Z \rightarrow \ell \ell!$

 $^\circ$ Make full use of the ATLAS detector \rightarrow say goodbye to $Z \rightarrow \ell\ell$ backgrounds

Mid-Run-2 results (36.1 fb⁻¹ of data)

$^{\rm o}$ Only channels with hadronically-decaying $\tau {\rm 's}$ considered

 $\circ Z \rightarrow e\tau$:

- $\circ~2.3\sigma~{
 m excess~observed}$
- \circ 95% CL limit: BR(Z → eτ) < 5.8 × 10⁻⁵

- $^{\circ}$ With full-Run-2 data (~ 150 fb⁻¹), projected expected limits:
 - BR(Z → $e\tau$) < ~1.0 × 10⁻⁵ current limit (LEP): 9.8 × 10⁻⁶ • BR(Z → $\mu\tau$) < ~8.9 × 10⁻⁶ current limit (LEP): 1.2 × 10⁻⁵
- $^\circ$ With HL-LHC data (~ 3000 fb^{-1}), projected expected limits :
 - $\circ \operatorname{BR}(Z \to e\tau) < \sim 2.2 \times 10^{-6}$
 - $\circ \operatorname{BR}(Z \to \mu \tau) < \sim 2.0 \times 10^{-6}$

So far limits shown are with hadronic taus only

• Expect another factor of $\sim 1/\sqrt{2}$ improvement with leptonic taus considered!

Conclusion

- The $Z \rightarrow e\tau/\mu\tau$ LFV decays are interesting signals of BSM phenomena
- By making use of the signal's unique features, we are able to set stringent limits on the LFV branching ratios with ATLAS
- With improved methods and more and more data, we really expect to push the limits even further
- Stay tuned for the full-Run-2 analysis results!

Backup

Event selection against $Z \rightarrow \ell \ell$

Run-1 $H \rightarrow \ell \tau$ limits

Hadronic and leptonic tau channels have similar sensitivities

• Statistically combined \rightarrow improve limit by a factor of $\sim 1/\sqrt{2}$

 \circ As a very rough estimate, can expect the same for $Z \to \ell \tau$

