Nikhef DM Group: XENONIT, XENONT, DARWIN KamLAND-Zen and next talk: XAMS, Modulations

UNIVERSITEIT VAN AMSTERDAM

Nikhef Jaarvergadering 2018

Patrick Decowski decowski@nikhef.nl

The DM Group

Left group: Andrew Brown (Postdoc), Jelle Aalbers (PhD), Frank Linde New in group: Peter Gaemers (PhD), Joran Aangevare (PhD)

Patrick Decowski - Nikhef/UVA

Not pictured: Bouke Jisse Jung

The DM Group

Left group: Andrew Brown (Postdoc), Jelle Aalbers (PhD), Frank Linde New in group: Peter Gaemers (PhD), Joran Aangevare (PhD)

Patrick Decowski - Nikhef/UVA

Not pictured: Bouke Jisse Jung

[Failed in "Expert and Newcomer's View": all people at DARWIN meeting]

Our man in Sendai: KamLAND-Zen 800

Blog: https://kono-michi-ya.com

Inside Kamioka Mine: what a KamLAND shift looks like

The KamLAND-Zen detector

Time flies! It's only been two

"Douzo yoroshiku

Patrick Decowski - Nikhef/UVA

The first week: Bunka, **Bears and Banks**

Bouke Jisse Jung (MSc student) Volkert van der Willigen Grant

Another Xe Experiment: KamLAND-Zen 800

750kg ¹³⁶Xe: Looking for Majorana Neutrinos

Patrick Decowski - Nikhef/UVA

Ch2 22/05 11:42 Normal

Ch2 22/05 11:42 Normal

New Balloon: ~4m radius

O.

Use annual modulation: DM claim

Use annual modulation: DM claim

Use annual modulation: DM claim

- DAMA claim in Nal
- Several DM experiments investigating:
 - COSINE-100, SABRE, ANAIS, ...
 - Manufacturing of Low BG crystals achieved
 - Southern hemisphere

Patrick Decowski - Nikhef/UVA

WIMP Mass $[\text{GeV}/c^2]$

WIMP Mass $[\text{GeV}/c^2]$

Patrick Decowski - Nikhef/UVA

Projections in 2013

WIMP Mass $[\text{GeV}/c^2]$

Patrick Decowski - Nikhef/UVA

Solid State Cryogenic Detectors

- Cryogenic detectors @ 10s of mK temperatures
 - Low energy threshold (100 1keV)
 - Excellent energy resolution (<1%)
 - Differentiate NR from ER on Event-by-Event basis
 - Readout: TES and NTD-Ge bolometers
 - CRESST, SuperCDMS, EDELWEISS \bullet

SuperCDMS@SNOLAB

- Use Neganov-Luke, better E-resolution
- Relatively short exposure due to cosmic BG activation

Use Ge and Si crystals ionization & phonons

iZIP: better BG rejection

HV: lower E threshold

[¬] 10^{−30} () −31 () 10⁻³² 10⁻³² U 10⁻³³ U 10⁻³⁴ U 10⁻³⁴ U 10⁻³³ . NON100 Low-Mass 2016 10⁻³⁵ S 10⁻³⁶ O 10⁻³⁷ 6 10⁻³⁸ ` ncl 10⁻³⁹Ž Particle 10^{-40} **10**⁻⁴¹ 10⁻⁴² Matter 10⁻⁴³ ^ 10⁻⁴⁴ اں بر 10⁻⁴⁵ م 10^{-46} $\frac{1}{30}$ 10⁻⁴⁷ 20

Patrick Decowski - Nikhef/UVA

Searching for Sub-GeV WIMPs

Drive to be sensitive to sub-GeV mass DM

Dual-Phase Xe TPC

XENONIT: 3.2 tons of liquid xenon

Patrick Decowski - Nikhef/UVA

TPC assembly during Fall 2015

Exposure

- Two Science Runs: 32 days and 247 days
- About I ton-year of exposure accumulated in I.3 ton fid. volume

Calibration Systems

- Variety of calibration sources: \bullet
 - "Internal" sources: ^{83m}Kr, ²²⁰Rn
 - External sources: ²⁴¹AmBe, neutron generator \bullet
 - Materials: ⁶⁰Co, ^{129m}Xe, ^{131m}Xe

Improved calibration statistics **SRO**

Patrick Decowski - Nikhef/UVA

Wide range energy reconstruction

Patrick Decowski - Nikhef/UVA

ROI: 3PE < SI < 70PE equiv: ER: 1.4 - 10.6 keV_{ee} NR: 4.9 - 40.9 keV_{nr}

Patrick Decowski - Nikhef/UNA

Analysis was: Blinded & "Salted"

Fiducial mass Selection

- Signal and background are modeled in (cSI, cS2, R, "z") space
- Fiducial mass increased from 1 ton \rightarrow 1.3 tons
- Total exposure of SR0+SR1: I ton x year

Patrick Decowski - Nikhef/UVA

Low, low Background

• Lowest BG ever achieved in a dark matter detector!

Accidental + Surface Backgrounds

Accidental Background

Surface Background

Plate out of ²¹⁰Po and incomplete charge (S2) collection

NR Background Neutrons will multiple scatter in LXe - WIMPs will not

Results after unblinding + unsalting

Patrick Decowski - Nikhef/UVA

[PE]

 $cS2_{b}$

Ref NR region 200 GeV WIMP (for illustration)

Pie charts: events passing all cuts, rel. prob. of BG and signal, assuming 200 GeV WIMP

Results after unblinding + unsalting

Patrick Decowski - Nikhef/UVA

Patrick Decowski - Nikhef/UVA

Patrick Decowski - Nikhef/UVA

Patrick Decowski - Nikhef/UVA

Pati

HEP :: HEPNAMES :: INSTITUTIONS :: CONFERENCES :: JOBS :: EXPERIMENTS

find topcit 100+ and de 2018 not tc proceedings not t rpp	Brief format
find j "Phys.Rev.Lett.,105*" :: more	
Sort by: Display results:	
earliest date 🛊 desc. 🛊 times cited 🛊 25 results 🛊 single list 🛊	
HEP 6 records found	
1. Planck 2018 results. VI. Cosmological parameters	
(350) Planck Collaboration (N. Aghanim (Orsay, IAS) et al.). Jul 17, 2018. 71 pp.	
e-Print: arXiv:1807.06209 [astro-ph.CO] I PDF	
References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote	
ADS Abstract Service	
Detailed record - Cited by 350 records 250+	
2. Dark Matter Search Results from a One Ton-Year Exposure of X (192) XENON Collaboration (E. Aprile (Columbia U.) et al.). May 31, 2018. 8 pp. Published in Phys.Rev.Lett. 121 (2018) no.11, 111302 DOI: 10.1103/PhysRevLett.121.111302	ENON1T
e-Print: arXiv:1805.12562 [astro-ph.CO] I PDF	
References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote	
ADS Abstract Service	
Detailed record - Cited by 192 records 100+	
3. Planck 2018 results. X. Constraints on inflation	
(159) Planck Collaboration (Y. Akrami (Leiden U. & Inst. Theor. Astrophys., Oslo) et al.). J e-Print: arXiv:1807.06211 [astro-ph.CO] PDF	ul 17, 2018. 66 pp
References BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote ADS Abstract Service	
Detailed record - Cited by 159 records 100+	
4. An absorption profile centred at 78 meganertz in the sky-avera	jea spectrum

Search took 1.38 seconds.

2018. 66 pp.

WIMP-pion coupling

Leading: WIMP-single nucleon

Coupling to pion-exchange

Patrick Decowski - Nikhef/UNA

XENON Coll, arXiv:1811.12482

Double Electron Capture

- Second order process like double β -decay, but longer lived - so far only measured in ¹³⁰Ba and ⁷⁸Kr
- ¹²⁴Xe is a candidate isotope \bullet
 - 0.095% Nat. abundance \bullet
 - Peak at 64.3 keV from K-shell captures

$$T_{1/2}^{2\nu 2EC} \propto G_{2\nu} |M_{2\nu}|^2$$

$$Phase Space Factor$$

Nuclear Matrix Element

Ending XENON1T Ops

- XENONIT as XENONnT R&D setup since May 2018:
 - XENONnT DAQ test
 - ³⁷Ar calibration: 2.82 and 0.27 keV lines
 - Continuous Rn distillation
 - Changing drift and extraction fields
 - . . .

• XENONIT officially ended December 10

- Water from the water tank discharged
- LXe recuperation ongoing...

049000			20		,		
048000		_	26	6.000	D		
047000		_	24	.00(D		
046000	GEN	_	22	.000	D	GE	
045000	I_TILTMETE	_	20	0.000)		
044000	RA_AI.PI [r	_	18	.000)	ERT_AI.PI	
043000	ad]	_	16	6.000	D		
042000		_	14	.000	D		
041000		_	12	2.000	D		
040000			10	0.000)		

From XENON1T to XENONnT

- Reuse most of XENONIT
- Larger inner cryostat vessel
- New TPC
- Additional ~250 PMTs (~500 total)
- Total of ~8 tons of LXe
- I0x lower ²²²Rn
- Funding complete
- Detector being built / designed
- Start in 2019

Similar efforts: LZ (USA), PandaX-xT (China)

Our XENONnT Goal

New Magnetic Pump

- New Magnetic Pump
 - Increase LXe purity longer drift
 - Reduce ²²²Rn contamination (from emanation of pump materials) \bullet

Ten-fold radon reduction:

- New pumps:
 - Novel magnetic piston pump R&D
- Continuous radon distillation
 - Already shown to work

222Rn Background

Patrick Decowski - Nikhef/UVA

Even larger Xe detectors

<u>XENONnT</u>

8t of LXe total Reuse a lot of XENONIT infrastructure Funding fully secured Start in 2019

Patrick Decowski - Nikhef/UVA

DARWIN

50t of LXe total Global effort Funded through 2 ERC grants **Start in 2025**

Physics Channels

• WIMP searches

- Spin-independent
- Spin-dependent and inelastic interactions
- - Alternative dark matter candidates
 - Coupling to electrons via axio-electric effect
- Supernova neutrinos
 - Sensitivity to all neutrino flavors (via CNNS)
 - Complementarity to large-scale neutrino detectors
- - Predicted by SM, only very recently observed!
- Low-energy solar neutrinos: pp, ⁷Be
 - Test/improve solar model, test neutrino models
- Neutrinoless double beta decay

 - No enrichment in ¹³⁶Xe required

As detector size increases physics channels open up

Patrick Decowski - Nikhef/UVA

Solar axions and galactic axion-like particles (ALPs) ER

Coherent neutrino-nucleus scattering (CNNS) NR

• Lepton number violating process, effective Majorana mass

NR

NR

ER

ER

DARWIN WIMP Sensitivity

- Combined (SI+S2) energy scale
- Energy window 5-35 keV_{nr}
- Light yield 8 PE/keV

 \rightarrow minimum sensitivity: 2.5×10⁻⁴⁹ cm² @ 40 GeV/c²

Patrick Decowski - Nikhef/UVA

JCAP 10, 016 (2015)

• Assumed exposure 200 ton×yr, all backgrounds included • Likelihood analysis: 99.98% ER rejection, 30% NR acceptance

Coherent Neutrino-Nucleus Scattering

- $v + N_{Xe} \rightarrow v + N_{Xe}$
- Predicted by SM, recently observed
- CNNS is background for WIMPs,
- Steeply falling spectrum

JCAP 01, 044 (2014)

20

- Neutrino-electron elastic scattering
- Real-time measurement of neutrino flux \rightarrow 7.2 events/day from pp (40 ton LXe \rightarrow 0.9 events/day from ⁷Be detector)
- 2% (1%) statistical precision after 1 year (5 years) \rightarrow constrain solar models
- Neutrino survival probability measurement \rightarrow deviation from prediction indicates new physics
- Atomic binding effects have to be taken into account!

Solar Neutrinos

Supernova Neutrinos

- Low threshold (due to S2-only)

- Hundreds of events for a 27M_o SN progenitor at 10 kpc
- Flavor-insensitive neutrino energy measurement \rightarrow constrain total explosion energy and reconstruct the SN light curve

Patrick Decowski - Nikhef/UVA

Neutrinoless Double Beta Decay

Is the neutrino a Majorana particle?

- ¹³⁶Xe abundance in natural xenon 8.9%
 - 40t of Xe has 3.6t of ¹³⁶Xe
- Q-value (2458.7±0.6) keV
- Energy resolution (σ/μ) at $Q_{\beta\beta}$ 1%

Summary

- XENONIT has achieved extraordinary sensitivity and is the leading direct detection DM exp
 - Still many analysis ongoing: many papers in the pipe-line
- WIMP dark matter still very much alive and a large parameter space has not yet been probed
 - Future experiments (~2025) will improve sensitivity by 100x!
- At the same time diversify
 - Look for broader DM candidates: low-mass WIMPs, Axions, ALPs, sterile nus, ...
 - New physics channels: extraordinarily pure volume new surprises?
- XENONnT, DARWIN are addressing all of these!
- Finally: big thank you to the MT, ET and CT/PDP groups for all their help!

Patrick Decowski - Nikhef/UVA

Cut & Count

Mass	1.3 t	1.3 t	0.9 t	0.65 t
$(cS1, cS2_b)$	Full	Reference	Reference	Reference
ER	627 ± 18	1.62 ± 0.30	1.12 ± 0.21	0.60 ± 0.13
neutron	$1.43 {\pm} 0.66$	$0.77 {\pm} 0.35$	$0.41 {\pm} 0.19$	$0.14{\pm}0.07$
$CE\nu NS$	$0.05 {\pm} 0.01$	$0.03 {\pm} 0.01$	0.02	0.01
AC	$0.47\substack{+0.27 \\ -0.00}$	$0.10\substack{+0.06 \\ -0.00}$	$0.06\substack{+0.03 \\ -0.00}$	$0.04\substack{+0.02\\-0.00}$
Surface	106 ± 8	$4.84{\pm}0.40$	0.02	0.01
Total BG	735 ± 20	$7.36 {\pm} 0.61$	$1.62 {\pm} 0.28$	$0.80 {\pm} 0.14$
$\operatorname{WIMP}_{\operatorname{best-fit}}$	3.56	1.70	1.16	0.83
Data	739	14	2	2
Using full S	S+BG mo	odel	f "Safe"	referer
(SI, S2, R,	"Z") spa			

Patrick Decowski - Nikhef/UVA

Plate out in PTFE

Patrick Decowski - Nikhef/UVA

Radon decay chains

"Bad" Radon

Background

Patrick Decowski - Nikhef/UVA

"Good" Radon

