

Neutrino telescopes as QCD microscopes Rhorry Gauld

Nikhef Jamboree, 18th December 2018

Netherlands Organisation for Scientific Research

Young generation - My trajectory to Nikhef

- DPhil, Oxford
 - Heavy quarks physics
- Postdoc IPPP, Durham Collider phenomenology
- Postdoc ETH, Zurich - Higher-order corrections
- ЕТН

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

VENI Grant at Nikhef

"... from colliders to the cosmos"

Rhorry Gauld, Nikhef Jamboree 2018

University

Overview

- Neutrino telescopes
 - why is QCD relevant?

- Challenges:
 - data-driven
 - theoretical (skipped for time)

BGR18 predictions

• Concluding remarks

Valerio Rhorry

Juan

Neutrino messengers

- Weakly interacting, point to production source (unhindered after production)
- Indicative of cosmic ray accelerators (come from charged pion/kaon decays)

Neutrino messengers

Credit: IceCube/NASA

Multi-messenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

The IceCube, *Fermi*-LAT, MAGIC, *AGILE*, ASAS-SN, HAWC, H.E.S.S, *INTEGRAL*, Kanata, Kiso, Kapteyn, Liverpool telescope, Subaru, *Swift/NuSTAR*, VERITAS, and VLA/17B-403 teams *[†]

Individual astrophysical sources previously detected in neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017 we detected a high-energy neutrino, IceCube-170922A, with an energy of ~290 terra– electronvolts. Its arrival direction was consistent with the location of a known γ -ray blazar TXS 0506+056, observed to be in a flaring state. An extensive multi-wavelength campaign followed, ranging from radio frequencies to γ rays. These observations characterize the variability and energetics of the blazar and include the first detection of TXS 0506+056 in very-high-energy γ rays. This observation of a neutrino in spatial coincidence with a γ -ray emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos.

290 TeV

• Weakly interacting, point to production source (unhindered after production)

• Indicative of cosmic ray accelerators (come from charged pion/kaon decays)

Neutrino messengers

- Weakly interacting, point to production source (unhindered after production)
- Indicative of cosmic ray accelerators (come from charged pion/kaon decays)

$$\left[s = (k+p)^2 = m_N^2 + 2m_N E_\nu \right]$$
 Total CoM Energy

$$s = (k+p)^2 = m_N^2 + 2m_N E_{\nu}$$

Total CoM Energy

$$Q^2 = -q^2 = -(k - k')^2$$

 $Q^2 \in [Q^2_{\min}, 2m_N E_{\nu}]$

$$s = (k+p)^2 = m_N^2 + 2m_N E_{\nu}$$

Total CoM Energy

$$Q^{2} = -q^{2} = -(k - k')^{2}$$
$$Q^{2} \in [Q^{2}_{\min}, 2m_{N}E_{\nu}]$$

$$s = (k+p)^2 = m_N^2 + 2m_N E_{\nu}$$

Total CoM Energy

$$Q^{2} = -q^{2} = -(k - k')^{2}$$
$$Q^{2} \in [Q^{2}_{\min}, 2m_{N}E_{\nu}]$$

 $\overline{2m_N yE_{\nu}}$

 $x \in [x_{\min}(Q_{\min}^2), 1]$

 Q^2

 $2q \cdot p$

 \mathcal{X}

$$y = \frac{q \cdot p}{k \cdot p} = 1 - \frac{E'}{E_{\nu}}$$

Elasticity, $y \in [0, 1]$

Example, 500 PeV neutrino $(5 \times 10^8 \text{ GeV})$

Example, 500 PeV neutrino $(5 \times 10^8 \text{ GeV})$

D-hadrons at LHCb pp→cc̄, √s = 7 TeV $\log_{10}(x_2)$ $pp \to D + X$ $p_{_{T}}(D^0) < 8.0 \text{ GeV}$ $4.0 < y(D^0) < 4.5$ <x,> = 5.1e-02 g<x₂> = 1.5e-05 -3 -0W X g ' -5 -5 -3 -2 -4 -6 -1 0 $\log_{10}(x_{1})$ LO PDF sampling occurs at Moderate x $x_{1,(2)} = \frac{m_T}{\sqrt{S}} \left(e^{(-)y_3} + e^{(-)y_4} \right)$ Bending plane Muon detector ECAL HCAL Interaction point RICH 2 300mrad x_1 Beam x_2 Vertex detector

Rhorry Gauld, Nikhef Jamboree 2018

15

Calo

Muon

Tracking

D-hadrons at LHCb

Example, 500 PeV neutrino

Heavy quark mass effects

- FONLL matching scheme, *Forte et al.*, arXiv:1001.2312
- Top quark mass effects included at NLO, e.g. $\nu + q_d \rightarrow \ell^- + t$
- Nuclear corrections (Target is H_2O)

- Obtained with EPPS16 nPDFs, Eskola et al., arXiv:1612.05741

$$F^{H_2O} = \frac{1}{2+A} \left(2F^p + ZF^{p,A} + NF^{n,A} \right)$$

Rhorry Gauld, Nikhef Jamboree 2018

Z = 8

N = 8

A = Z + N

Results - BGR18

For details: Bertone, Gauld, Rojo, arXiv:1808.02034

- Nuclear corrections relevant in PeV range
- Theoretical predictions stable (<10% unc.) into multi PeV range

Results - BGR18

For details: Bertone, Gauld, Rojo, arXiv:1808.02034

• Significant differences (10%) w.r.t. to older benchmark calculations

• Origin understood, more accurate BGR18 predictions should be used

• Significant differences (10%) w.r.t. to older benchmark calculations

• Origin understood, more accurate BGR18 predictions should be used

Neutrino telescopes

Collider experiments

Nuclear corrections

Heavy quark mass effects in DIS

Top quark production also possible:

$$CC: \quad \nu + q_d \to \ell^- + t$$

Kinematically possible if:

$$W^2 = \frac{Q^2(1-x)}{x} > m_t^2$$

b-quark PDF generation enhanced at small x

CC: top-quark effects important

Perturbative stability

Differences in input PDFs ~(20-30)%

Cancellations between coefficient functions and PDFS:

$$F_{i}(x,Q^{2}) = \sum_{a=g,q} \int_{x}^{1} \frac{dz}{z} C_{i,a}\left(\frac{x}{z},Q^{2}\right) f_{a}\left(z,Q^{2}\right)$$

=> Cross-section level ~(2-3)%

Other results

Comparison of NC cross-section

Dependence of UHE cross-section on treatment of LHCb D-hadron data

- Scale variations
- c-quark mass variation

BFKL dynamics at small-x

Ball, Bertone, Bonvini, Marzani, JR, Rottoli 17

Monitor the **fit quality** as one includes more data from the **small-***x* **region**

Best description of **small-***x***HERA data** only possible with **BFKL effects!**

28

Exclusively reconstruct D-hadrons within experimental acceptance

$$p_T^D < 8 \text{ GeV}$$
$$2.0 < y^D < 4.5$$

Measurements performed double differentially in p_T^D and y_D $N_X^{ij} = \frac{d^2\sigma(\text{X TeV})}{dy_i^D d(p_T^D)_j} / \frac{d^2\sigma(\text{X TeV})}{dy_{\text{ref}}^D d(p_T^D)_j}$

Measurements performed at multiple hadronic CoM values

$$R_{13/X}^{ij} = \frac{d^2\sigma(13 \text{ TeV})}{dy_i^D d(p_T^D)_j} \left/ \frac{d^2\sigma(X \text{ TeV})}{dy_i^D d(p_T^D)_j} \right|$$

$$x_{1,(2)} = \frac{m_T}{\sqrt{S}} \left(e^{(-)y_3} + e^{(-)y_4} \right)$$

Hadronic CoM Energy 29

	NLO		NLO+NLLx		NNLO+NLLx	
Dataset (N_{dat})	$\chi^2_{\rm orig}/N_{\rm dat}$	$\chi^2_{\rm new}/N_{\rm dat}$	$\chi^2_{\rm orig}/N_{\rm dat}$	$\chi^2_{\rm new}/N_{\rm dat}$	$\chi^2_{ m orig}/N_{ m dat}$	$\chi^2_{\rm new}/N_{\rm dat}$
N_5 (78)	1.0	0.71	1.11	0.78	1.61	0.84
N_7 (72)	0.8	0.69	0.84	0.72	0.96	0.75
N_{13} (119)	1.51	1.13	1.6	1.16	2.0	1.22
N_{5+7+13} (269)	1.17	0.89	1.25	0.93	1.61	0.98
$R_{13/5}$ (99)	1.64	1.66	1.87	1.79	1.83	1.74

Chi-squared values for NNPDF3.1sx fits - Bertone, Gauld, Rojo: arXiv 1808.02034

Example, 500 PeV neutrino

Impact of LHCb data on UHE cross-section

Results - BGR18

For details: Bertone, Gauld, Rojo, arXiv:1808.02034

- Nuclear corrections relevant in PeV range
- Theoretical predictions stable (<10% unc.) into multi PeV range

Next on the agenda...

In progress: *RG*, arXiv:1901.XX

