

Einstein Telescope: Paving the road and prospects

Chris Van Den Broeck

Nikhef Jamboree, Utrecht, 17-18/12/2018

Einstein Telescope

Einstein Telescope

- Underground, 10 km triangle
- > Xylophone design:
 - 3 low laser power, cryogenic: low-frequency sensitivity
 - 3 high laser power, non-cryogenic: high-frequency sensitivity

Einstein Telescope distance reach

- Detection of binary black holes at times there were no stars yet (hence primordial!)
- O(10⁵) binary black hole and binary neutron star mergers detected per year

Precision tests of general relativity

What is the true nature of black holes?

- Black hole no-hair conjecture
 - Stationary black holes only determined by mass and spin
 - "Ringdown" modes of newly formed black hole:
 - Frequencies, damping times only depend on mass and spin
 - Einstein Telescope will test these dependences for individual modes with sub-percent accuracy
- Signatures of quantum gravity?
 - Prompted by Hawking's information paradox:

"Firewall" instead of horizon

Leads to gravitational wave "echoes"

Probing the interiors of neutron stars

- Widely differing theoretical predictions for equation of state
- LIGO, Virgo: exploit tidal effects to gain information on internal structure
- Einstein telescope:

Also access to the post-merger regime

 Detailed mapping of neutron star interiors

Mapping the large-scale evolution of the Universe

- With a network of detectors, can extract distance directly from gravitational wave signal of binary inspirals
- No need for a "cosmic distance" ladder with one type of object calibrating the other

- LIGO/Virgo: independent measurement of Hubble constant
 - ET: independent measurement of the nature and time evolution of dark energy

Primordial gravitational waves

- Range of scenarios for primordial gravitational waves originating from immediately after Big Bang:
 - Phase transitions
 - Axion inflation
 - Resonant pre-heating
 - Cosmic strings

•

Plans in the United States: Cosmic Explorer

- 40 km arm length
- (Mostly) above ground
 - Single L-shaped detector
 Or two, in different locations
- Partially cryogenic
- Recent idea (after first detection)
- Together with ET: sky localization

Plans in the United States: Cosmic Explorer

Advantages in having Einstein Telescope, Cosmic Explorer running at the same time as LISA

LISA has a planned launch in 2034
 Make sure ET and CE have consistent timelines

Joint science case for ET and CE

- Einstein Telescope Conceptual Design Study dates from 2011
 - How do we optimize a detector network that includes Cosmic Explorer?
 - Need to involve instrumentalists, data analysists, theorists: community building/expansion
- New science case document to be produced in 2019
 - Under aegis of the Gravitational Waves International Committee (GWIC)
 - October 2018: meeting of the writers and editors in Potsdam, Germany
 - Significant Dutch presence/input

ETpathfinder in Maastricht

- R&D facility
- 20 meter interferometer
- Funded through Belgian-Dutch-German "Interreg" project
- Possible lab location found in Maastricht

Desirable timelines

	2019	2020	2021	2022	2023	2024	2025	2026		2032
Einstein									•••	
				ESFRI status						
				site de	e decision			construction		
HIROCH										science
A CARLESS -	-									
Talascona										
TELESCOPE										

Einstein Telescope in Europe and Belgium/Netherlands/Germany

- April 2018: the ET Collaboration!
 - Letter of Intent: <u>http://www.et-</u> <u>gw.eu/index.php/letter-of-intent</u>
 - Now ~600 members

- Belgium/Netherlands/Germany, September 2018:
 - MoU between all Belgian universities, many Dutch, some German

technopolis

Impact assessment of the Einstein Telescope

Final report, 28/09/2018

Impact assessment of the Einstein Telescope Final report, 28/09/2018 technopolis (group) September 2018

Joost van Barneveld Lisanne Saes Ivette Oomens Geert van der Veen

www.technopolis-group.com

Impact study for the Eindhoven-Leuven-Aachen triangle

M	Impacts of ET investment									
		ETpathfinder	Einstein Telescope (ET)							
	Scenarios	ETpathfinder	ET-ELAt	ET- elsewhere						
Investr	nents (rough estimate**)	Limited (M€10-30)	Very large (M€400-700)	Large (M€100-325)						
Operational costs (rough estimate**)		M€0,1-0,2/y	M€ 10 - 20/y	M€7 - 13/y						
Regional economic effects		Limited	Large	Limited						
Organisational impact		Can be fairly large	Very Large	Large						
Visibility, reputation		Limited	Large	Limited						
Scienti	fic impact	Limited	Very Large	Large						
Innovation impact and long term economic impacts		Possibly large	Possibly very large	Possibly very large						

Roadmaps

ET 1 out of 33

ET 1 out of 13

ET "game changer"

What next?

ESFRI

2020

- Technical design study needed
 - Detailed cost scrutiny
 - Realistic exploitation cost estimate
- Governance structure
 - Management structure of the ET Collaboration to be finalized early 2019

ET proposal for 2020 update of
 ESFRI roadmap

 Decision in ~2021 whether to submit a joint Belgian-Dutch-German bid for hosting
 Einstein Telescope in the
 Eindhoven-Leuven-Aachen
 region