Reheating the universe after inflation

Jorinde van de Vis
Nik]hef
Jamboree
December 18, 2018

Cosmology in the Nikhef Theory group

Theoretical Cosmology in the Netherlands

Visit to UMass

©
Amherst Center for Fundamental Interactions
Physics at the interface: Energy, Intensity, and Cosmic frontiers
University of Massachusetts Amherst

MIT

What is reheating?

What is inflation?

- Phase of accelerated expansion in the early universe

■ Solves horizon problem (and more)

Inflation

Modified from Tasi Lectures on Inflation, Baumann

Reheating

Modified from Tasi Lectures on Inflation, Baumann

Transition from a universe filled with inflaton to a universe filled with SM (and DM?) particles

Initial stage: Preheating

- Oscillating inflaton field leads to resonant particle production

■ Exponential growth of particle number

Kofman, Linde, Starobinsky 1997

End of (p)reheating

Why is reheating interesting?

- Does reheating complete

■ Dark matter production before Big Bang Nucleosynthesis?

Why is reheating interesting?

- Duration of reheating affects the comparison of inflationary models to CMB observables

Planck 2018

Preheating after Higgs inflation E Sfakianakis, JvdV 2018

- Higgs responsible for inflation?
- Couplings to SM are known
- Strong coupling: very fast reheating through gauge bosons
- Intermediate coupling: reheating through Higgs bosons

Higgs vacuum decay during preheating? M Postma, JvdV 2017

■ Electroweak vacuum metastable?

■ Efficient preheating of Higgs modes might lead to vacuum decay

Degrassi et al. 2012

Summary

- Transition from a universe dominated by inflaton to universe with SM particles
- Does reheating finish before BBN?
- Dark matter production
- CMB constraints

■ Reheating after Higgs inflation

■ Stability of the electroweak vacuum

