NikThef KM3NeT

Models of Particle Signatures in KM3NeT ORCA

Jordan Seneca

November 1, 2018

Introduction

Motivation
Procedure
Models
Reconstructions
Conclusion

Introduction

KM3NeT's goal: What is the Neutrino Mass Ordering (NMO)?

Introduction

Certain extrasolar objects accelerate particles to high energies, which are called cosmic rays.

Cosmic rays collide with the Earth's atmosphere and produce neutrinos. ${ }^{3}$

Atmospheric neutrinos can travel through the entire Earth virtually unaffected, causing a ubiquitous flux.

Introduction

Atmospheric neutrinos can interact in water and create product particles.

3-5 GeV v_{c} Charged Current interaction products

Neutral current \rightarrow hadronic particles.

Charged current \rightarrow lepton + hadronic particles

Introduction

Product particles from neutrino interactions produce more particles in showers

EM shower
$N_{\text {particles }} \propto E$
$X \propto \log E$

Hadronic shower
Complicated!

Introduction

Charged particles emit Cherenkov light in water.

This light is emitted at an angle θ, and can be seen by Photomultiplier tubes (PMT) ${ }^{5}$

[^0]
Introduction

${ }^{6} 68000$ PMTS.
$0.004 \mathrm{~km}^{3}$
KM3Net ORCA
1

Aims of this work

- Create model of light signatures in ORCA from ν interaction products.
- Use models for Monte Carlo simulation shortcut.
- Use models for reconstruction of particle showers and ν events.

Introduction

Motivation

Procedure
Models
Reconstructions
Conclusion

Motivation

Current models lump all events into showers or tracks.

- Only large scale differences used
- Simplified energy scaling

There is more stuff going on inside! Can we exploit details?

\rightarrow Create models of different product particles

Motivation

Advantages of KM3NeT ORCA:

1. ORCA is dense.
(Detect small events and finer features)

Motivation

Advantages of KM3NeT ORCA:

1. ORCA is dense.
(Detect small events and finer features)
2. KM3NeT has multidirectional DOMs.
(Additional dimensions in phase space and larger sensitive area)

Motivation

Advantages of KM3NeT ORCA:

1. ORCA is dense.
(Detect small events and finer features)
2. KM3NeT has multidirectional DOMs.
(Additional dimensions in phase space and larger sensitive area)
3. Events propagate in water.
(Straighter light path than in ice)

Motivation

Advantages of KM3NeT ORCA:

1. ORCA is dense.
(Detect small events and finer features)
2. KM3NeT has multidirectional DOMs.
(Additional dimensions in phase space and larger sensitive area)
3. Events propagate in water.
(Straighter light path than in ice)
4. (Our detection modules look super cool.)

Introduction
Motivation

Procedure

Models
Reconstructions
Conclusion

Procedure

Start off with simulated sample of ν-events in ORCA

Propagator and hit simulator is GEANT4 based KM3Sim
$\sim 250 \mathrm{M}$ events
view of simulated interaction vertices and ORCA outline.

Procedure

1. Pick product particle form sample
2. $N_{\mathrm{p} . \mathrm{e} .}$ of every particle hit gets filled in the $\left(E_{\text {particle }}, D, \eta, \theta_{\mathrm{PMT}}, \phi_{\mathrm{PMT}}, \Delta t_{\text {arrival }}\right)$ bin of 6d histogram.
3. Interpolate histogram and expand $\left\langle N_{\text {p.e. }}\right\rangle$ into Poisson distribution to obtain the \boldsymbol{p}. . . Pattern PDF (PEPP).

4. Repeat process for each particle to obtain each particle PEPP.

The PEPP tells you the probability of obtaining a p.e. given particle type and position in phase space
"It's basically an interpolation of state of the art particle interaction modelling in water." - me

Introduction
Motivation
Procedure

Models

Reconstructions
Conclusion

PEPPs Geometry

> 1. In water, $\cos \theta_{\text {Cher. }} \simeq 0.75$ for $\beta \simeq 1$, explaining the peak.
> 2. For 30 GeV electron,
> expect an EM shower of $\sim 6 \mathrm{~m}$.

30GeV Electron PEPP

PEPPs agree with theoretical expectations

PEPP Monte Carlo Simulations

$$
\begin{aligned}
& \text { Comparison of KM3Sim } \\
& \text { and PEPP MC, error bars } \\
& \text { and bands are for } \frac{1}{10} \sigma \text {. } \\
& \text { Excellent match for } \\
& \qquad \overline{T o t N_{\text {p.e. }}} \equiv \sum^{N_{\text {events }}} N_{\text {p.e. }} \text {. }
\end{aligned}
$$

PEPPs agree with original Monte Carlo simulation

PEPPs Energy Dependence

Left（right）：$\frac{20 \mathrm{GeV}}{2 \mathrm{GeV}}$ electron（proton）

PEPPs EM/Hadronic Comparison

$\frac{\text { protonPEPP }}{\text { electronPEPP }}$

3 GeV : very different

$30 \mathrm{GeV}:$ similar \rightarrow larger portion of EM particles in hadronic shower.

Introduction
Motivation
Procedure
Models
Reconstructions
Conclusion

Reconstructions

Data cuts

1. >4 hits
2. Within inner half volume of ORCA

Before hit number cut

After hit number cut

Reconstruction Single Shower

> Single hadronic shower \equiv all ν-interaction secondaries minus leading lepton.

Angle difference
$\alpha \equiv \cos ^{-1} \hat{p}_{\text {true }} \cdot \hat{p}_{\text {reco．}}$ ，where $\hat{p} \equiv \frac{1}{E_{\text {tot }}} \sum_{i}^{N} \hat{p}_{i} E_{i}$ ．

Intrinsic limit paper ${ }^{8}$ shows best possible resolution of ORCA．

Not directly comparable due to hit cut，but gives an idea．

[^1]」ロ・《白

Reconstruction Single Shower

Single electron．

Angle difference
$\alpha \equiv \cos ^{-1} \hat{p}_{\text {true }} \cdot \hat{p}_{\text {recoo }}$ ，where
$\hat{p} \equiv \frac{1}{E_{i 0 t}} \sum_{i}^{N} \hat{p}_{i} E_{i}$.

Resolution reproduces that of LOI

[^2]
Reconstruction Single Shower

Single hadronic shower energy difference $\Delta E \equiv \frac{E_{h, \text { true }}-E_{h, \text { ece }}}{E_{h, \text { tre }}}$, where $E_{h} \equiv E_{\nu}-E_{\text {lep }}$.

Energy difference resolution for low energies, close to intrinsic resolution for >4 hits.
π_{+}best at reconstructing hadronic showers, supposedly due to high presence of $\pi_{+/-}$in hadronic showers.

Reconstruction Single Shower

Identifying hadronic shower possible?

Top: 25 - 35 hits.
$25-80$ hit region shows promise for 1σ separation.

At higher energies,
EM shower \simeq hadronic shower
\rightarrow no distinguishing power.

Reconstruction Neutrino Event

ν_{e}-charged current angle difference.

Assuming 3 m position resolution and 5 ns timing resolution

Close to intrinsic limits at low energies.

Reconstruction Neutrino Event

Position of single hadronic shower, identical to ν-NC.

Reproduces resolutions for ν-CC as reported in LOI, but better resolution in other parameters accentuates this resolution!

Distance between shower maximum and vertex folded into model

\rightarrow naturally centres at zero.

Reconstruction Neutrino Event

Position of single hadronic shower, identical to ν-NC.

Reproduces resolutions for ν-CC as reported in LOI, but better resolution in other parameters accentuates this resolution!

Distance between shower maximum and vertex folded into model

\rightarrow naturally centres at zero.

Introduction
Motivation
Procedure
Models
Reconstructions

Conclusion

Conclusion

- Produced models of the signal of various particles in ORCA, PEPPs.
- PEPPS reproduce KM3Sim results with some deviations in timing.
- Reconstructions with PEPPS is possible, and competitive at best.

Next steps

- Investigate time arrival deviations from KM3Sim.
- Optimise PEPP reconstruction for full neutrino events.
- Reconstruct Bjorken-Y, improve sensitivity of ORCA to NMO.
- Include K-40 background + PMT response, next stage of tests for reconstruction.

Thank you for your attention!

Questions please.

Bibliography

Leftover slides

PEPPs Geometry

3 GeV electrons

Native coordinates

Cartesian transformation

Remember this because only native coordinates will be shown from now on.

PEPPs Time Arrival

Discerning power in time dependence

PEPPs Time Arrival

Discerning power in time dependence

PEPPs Geometry

Left (right): $\frac{20 \mathrm{GeV}}{2 \mathrm{GeV}}$ electron (proton)

Expected flat $10 \times N_{\text {particles }}$ Good agreement!

Features near Cherenkov angle (note: log scale)

PEPPs Geometry

$\frac{\text { protonPEPP }}{\text { electronPEPP }}$

3 GeV : very different

$30 \mathrm{GeV}:$ similar \rightarrow larger portion of EM particles in hadronic shower.

Reconstruction Single Shower

Direction electron

Reconstruction Single Shower

Energy electron

Reconstruction Neutrino Event

Reconstruction Neutrino Event ΔE for $\nu_{e}-\mathrm{CC}\left(\nu_{e}-\mathrm{NC}\right)$ above (below)

Secondaries

Number of EM and Hadronic related hits

$$
\overline{\equiv \bar{\equiv}} \quad \text { 5Q® } 52 / 65
$$

Secondaries

Event dependent hit yield

PDFs Time Arrival

Normalised view

PDFs Time Arrival

Angle dependence

PDFs Time Arrival

Discerning power in time dependence

Procedure

Chain of simulation：

$$
\begin{aligned}
& \downarrow \text {------------------- Input } \nu \\
& \downarrow \text { GENIE---------- Interaction } \\
& \downarrow \text { Km3Sim - - - Propagation + Re-interactions } \\
& \text { JTE---------PMT response + Trigger }
\end{aligned}
$$

Secondaries

Number of EM and Hadronic related hits

$$
\bar{\equiv} \text { 引ด® 55/65 }
$$

Secondaries

Event dependent hit yield

$$
\bar{\equiv} \text { 戸ดく 55/65 }
$$

Procedure

Used ORCA 1-100GeV all flavours ν-interaction samples

Motivation

Orca Energy resolution

Motivation

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$
\begin{array}{r}
P_{3 \nu} m\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \cos ^{2} \theta_{13}^{m} \sin ^{2}\left(\frac{A L}{4}+\frac{\left.\Delta m_{31}^{2}+\Delta^{m} m^{2}\right) L}{8 E_{\nu}}\right) \tag{1}\\
- \text { someotherterms }
\end{array}
$$

Motivation

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$
\begin{array}{r}
P_{3 \nu} m\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \cos ^{2} \theta_{13}^{m} \sin ^{2}\left(\frac{A L}{4}+\frac{\left.\Delta m_{31}^{2}+\Delta^{m} m^{2}\right) L}{8 E_{\nu}}\right) \tag{1}\\
- \text { someotherterms }
\end{array}
$$

Motivation

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$
\begin{array}{r}
P_{3 \nu} m\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \cos ^{2} \theta_{13}^{m} \sin ^{2}\left(\frac{A L}{4}+\frac{\left.\Delta m_{31}^{2}+\Delta^{m} m^{2}\right) L}{8 E_{\nu}}\right) \tag{1}\\
- \text { someotherterms }
\end{array}
$$

Motivation

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$
\begin{array}{r}
P_{3 \nu} m\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \cos ^{2} \theta_{13}^{m} \sin ^{2}\left(\frac{A L}{4}+\frac{\left.\Delta m_{31}^{2}+\Delta^{m} m^{2}\right) L}{8 E_{\nu}}\right) \tag{1}\\
- \text { someotherterms }
\end{array}
$$

Motivation

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$
\begin{array}{r}
P_{3 \nu} m\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \cos ^{2} \theta_{13}^{m} \sin ^{2}\left(\frac{A L}{4}+\frac{\left.\Delta m_{31}^{2}+\Delta^{m} m^{2}\right) L}{8 E_{\nu}}\right) \tag{1}\\
- \text { someotherterms }
\end{array}
$$

Motivation: number of electrons in path

Requires knowledge of the following:

- The matter density of the Earth
- The distance travelled through the Earth

Motivation: number of electrons in path

Requires knowledge of the following:

- The matter density of the Earth
- The distance travelled through the Earth

Motivation: number of electrons in path

Requires knowledge of the following:

- The matter density of the Earth
- The distance travelled through the Earth
- \rightarrow known by neutrino direction

Figure: Parametrization of electrons in path using the Earth

Motivation: neutrino flavor

The flavor of a neutrino is defined by the interaction it induces.

- Type of product particles
- Energies and directions of product particles

Motivation: neutrino flavor

The flavor of a neutrino is defined by the interaction it induces.

- Type of product particles
- Energies and directions of product particles

Motivation: neutrino energy

The neutrino energy affects the following outcomes:

- The size of the event in the detector (PMT positions)
- The number of $\gamma_{\text {cherenkov }}$

Procedure

Signatures are visible in the detector hit pattern.
What affects the hit pattern?

Procedure

Global topology, size, brightness, and direction directly couple to hit pattern.

Procedure

Global topology, size, brightness, and direction directly couple to hit pattern.
"Global Topology": The shape of an entire event vs.
"Individual topology": The shape of a single particle

Procedure

Global topology, size, brightness, and direction directly couple to hit pattern.
"Global Topology": The shape of an entire event VS.
"Individual topology": The shape of a single particle
Disclaimer: not really individual since particle themselves decay/re-interact into other particles.

Procedure

What affects global topology?

Product particle types

Product particle energies

Product particle directions

[^0]: ${ }^{5}$ Diagram from [Alaeian, 2014]

[^1]: ${ }^{8}$［Adrian－Martinez et al．，2017］

[^2]: ${ }^{8}$［Adrian－Martinez et al．，2017］

