Long-lived particles @ LHC: present and future

Theory meets Experiment mini-workshop on long-lived particles

Carlos Vázquez Sierra

Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands.

October 26, 2018

What is a long-lived particle (LLP)?

- A neutral particle that decays a macroscopic, reconstructable distance from the IP,
- or a charged particle that decays as above, or is quasistable on the scale of the detector.
- From "Flashes of Hidden Worlds at Colliders" (D. Curtin, R. Sundrum): [Physics Today 70 (2017) 6 46]

The LHC main detectors are a busy place, with lots of hadronic shrapnel flying around. Luckily, neutral LLP decays are a spectacular signature, and the burst of energy appearing out of nowhere sets it apart from the mundane rubble emanating from the collision point. Look-

Introduction

- SM LLPs due to approximate symmetries, small couplings, mass degeneracies, etc.
- Same principles apply to BSM particles \rightarrow easily get LLPs.
- Great opportunity for NP (direct searches) at LHC pretty much uncovered!

Different signatures – different types of searches:

- Characterised by LLP mass, production + decay and lifetime.
- A graphic example for ATLAS by H. Russell:

2019	2020	2021	2022	2023	2024	2025	202	6 2027	2028	2029	2030	2031	2032	203+	
		Run III						R	Run IV					Run V	
LS2						LS3					LS4				
LHCb 40 MHz UPGRADE Phase I		$L = 2 x 10^{33}$		LHCb Consolidation			L	$L = 2 \times 10^{33}$ 50 fb ⁻¹		LHCb Ph II UPGRADE *		$L = 2 x 10^{34} 300 fb^{-1}$			
ATLAS Phase I Upgr		$L = 2 \times 10^{34}$		ATLAS Phase II UPGRADE				$HL-LHC$ $L = 5 \times 10^{34}$		ATLAS		HL-LHC $L = 5 \times 10^{34}$			
CMS Phase I Upgr		300 fb ⁻¹		CMS Phase II UPGRADE			E			смѕ		3000 fb-1			
Belle I	I	5 ab ⁻¹	L = 8 x	10 ³⁵	50 0	ab ⁻¹									

• Challenging experimental conditions - improve detector performance and reach:

- Higher pile-up and occupancy \rightarrow higher detector granularity.
- Higher rate \rightarrow improve discriminating power and trigger capabilities.
- Higher fluence and radiation damage \rightarrow higher radiation hardness.
- In particular trigger and tracking systems are crucial for LLP searches.
- Increase the physics coverage of all the experiments:
 - We are open to new benchmark models we can use to produce physics projections.

Experimental challenges for P2 – complementarity

- Keep complementarity between LHCb, ATLAS and CMS:
 - Detector acceptance and vertexing capabilities play an important role.
 - LHCb can reach lifetime and masses that ATLAS & CMS can not and vice-versa.
- An example Run 1 search for pair produced Hidden Valley π_v via SM Higgs decay:
 - CMS 18.5 fb⁻¹ [PRD 91 (2015) 012007], recast [PRD 92 (2015) 073008]
 - ATLAS 20.3 fb⁻¹ [PRD 92 (2015) 012010] [PLB 743 (2015) 15-34]
 - Parameter space where $\mathcal{B}(H^0 \to \pi_v \pi_v) > 50\%$ is excluded at 95% confidence level:

• Interplay between searches and upgraded detector:

• Performance of ID, ITk, calo and muon triggers.

• Disappearing tracks:

Physics projection studies in Pixel TDR.

• Multi-track displaced vertices in ID + MET:

- Tracking studies in Pixel TDR.
- Physics projection studies to be done.

• Displaced vertices in muon spectrometer:

Muon trigger studies in TDAQ TDR.

Jets in HCAL with low EM fraction:

• Calo trigger studies in Tile TDR.

Disappearing tracks

- Charged particle decaying into invisible:
 - Sensitivity in lifetime from 10 ps to 10 ns.
 - Pure wino (higgsino) SUSY LSP, $\tau = 0.2$ (0.05) ns.
 - Selection (in Pixel TDR to be reoptimised):
 - MET > 450 GeV + one jet > 300 GeV.
 - Tracklet with 4 pixel hits and p_T > 250 GeV disappearing in strips.
 - Background is mostly fake tracklets (estimated using Upgrade MC & Run 2 data).
 - HL-LHC projection for pure wino LSP & tracking efficiency below:
 - Standard tracking produces more kinked tracks for pions than current ID.
 - Fakes significant → further optimisation of selection to reject fakes.
 - Expect to exclude > 800 GeV (> 250 GeV) for pure wino (higgsino) with 3000 fb⁻¹ data.

Multi-track displaced vertices in ID + MET

- Neutral or charged LLP decaying within ID:
 - Sensitivity in lifetime from 10 ps to 10 ns.
 - Gluino R-hadrons decaying into neutralino + jets.
 - Selection (taken from Run 2 analysis \rightarrow can be tuned):
 - Relies on reconstructing displaced tracks and displaced vertices from those.
 - Veto of vertices in detector material & MET above 200 GeV.
 - Requires at least one vertex with at least 5 tracks & DV mass at least of 10 GeV.
 - Run 2 efficiency versus truth MET & tracking efficiency below:
 - Reconstruction efficiency (reach) for displaced tracks increases up to 400 (500) mm.
 - Physics reach to be estimated (material veto in ITk, MET and vertexing efficiency).

q

LLP

 \tilde{g}

p

Displaced vertices in muon spectrometer

- Neutral LLP decays before muon spectrometer:
 - Decays into pairs of multiple pairs of collimated leptons.
 - HV models with dark photon decays into leptons:
 - Produce physics projections for this search \rightarrow [ATLAS-CONF-2016-042] for Run 2 results.
- Ourrent trigger:
 - Di-muon resolution limited to $\Delta \phi \sim$ 0.2 & single muon $p_{\rm T}$ threshold \sim 25 GeV.
- Upgraded (Phase 2) trigger:
 - New muon sector logic and trigger processors \rightarrow di-muon trigger with Rol.
 - Threshold reduced to ~ 10 GeV for $\Delta \phi = 0.01$ (see right plot below).
 - Significant gain for close muons in trigger efficiency.
 - Further optimisations foreseen for di-muon $\Delta \phi$ with the new algorithm.

Jets in hadronic calorimeter with low EM fraction

- $\bullet~$ Neutral LLP $\rightarrow~$ jets inside the hadronic calorimeter:
 - HS scalar boson \rightarrow HS particles \rightarrow heavy SM fermions.
 - Current trigger:
 - Dedicated L1 trigger based on τ candidates + low EMfrac.
 - Upgraded (Phase 2) trigger ideas:

- Pile-up activity in EM calorimeter → low EMfrac will become problematic.
- Increased longitudinal L1 granularity in Tile:
 - Compare energy deposit per layer \rightarrow reduce sensitivity to pileup.
- Deposited energy fraction versus decay radius for Tile BC (left) and D (right) layer:

• Tracker & RPC upgrade for HSCP:

[CMS-TDR-17-001] [CMS-TDR-17-003]

- HSCPs have a distinct signature in the detector.
- Exploit RPC time resolution & OT capabilities.

Displaced muons:

[CMS-TDR-17-003]

- New forward muon detectors to improve trigger.
- New tracking algorithms for displaced muons.

• Signatures with delayed photons/Z⁰ bosons:

- Sensitivity strongly limited by time resolution.
- New MTD \rightarrow new possibilities for LLP searches.

Tracker & RPC upgrade for HSCP [CMS-TDR-17-001] [CMS-TDR-17-003]

- Heavily ionising LLPs moving slowly in the detector:
 - Masses ~ O(1) TeV with β ~ 0.3 − 0.5.
- Exploit intrinsic time resolution of the RPC system:
 - HSCPs look like slow μ propagating through CMS.
 - Use RPC \rightarrow allow to trigger HSCPs with $\beta \sim 0.25$.
- Use IT and OT to identify signal tracks:
 - Anomalously high energy loss measurements (IT).
 - New threshold in OT (see right plot) → HIP flag.
- Performance of dE/dx discriminator for Phase 2:
 - HIP flag critical to restore tracker sensitivity in Phase 2.
 - ROC for gluino (1.4 TeV) and stau (1.599 TeV):

Displaced muons [CMS-TDR-17-003]

- L1 inefficient for tracks with few mm displacement:
 - Beamspot as constraint \rightarrow less rate, higher resolution.
- Inclusion of new GE2/1 forward muon detectors:
 - Will improve measurement of bending angle.
 - Highly efficient trigger for displacements up to 15 cm.
- **Displaced stand-alone** algorithm (no IP constraint):
 - Tracks reconstructed from only hits in muon chambers.
 - Benefit from additional hits from upgraded µ system.

- Consider GMSB model with smuon as NLSP (2 displaced OS- μ & MET > 50 GeV):
 - Impact parameter significance as background discriminator.
 - Signal efficiency 5% versus 10^{-4} for SM (QCD, $t\bar{t}$, DY) background.
 - Sensitivity without DSA algorithm (black line) \rightarrow reconstruction efficiency reduced by factor 3:

Signatures with delayed photons/ Z^0 bosons

- Higher lifetime bound $\rightarrow \bar{\chi}_1^0$ decays outside CMS.
- Lower lifetime bound → limited by time resolution:
 - Beamspot size in HL-LHC \sim 180 200 ps.
 - Resolution dominated by uncertainty from beamspot.
 - ECAL P2 improves performance but still not optimal.

Signatures with delayed photons/ Z^0 bosons

• New precision MIP Timing Detector (MTD) for Phase 2 (see Lindsey's talk at LHCC):

- Hermetic timing detector (MIP + barrel & endcap layers) with 30 ps precision.
- Acceptance of |η| <3.0 with p_T > 0.7 GeV in barrel and p > 0.7 GeV in endcap.
- Rejects spurious SVs & remove pileup tracks from isolation cones.
- ECAL P2 + MTD (blue region) increases sensitivity to short lifetimes (left plot below).
- Precision timing allows to reconstruct LLP SV \rightarrow measure LLP $\beta \rightarrow$ measure LLP mass:
 - Example for a complementary out-of-time channel is shown (right plot below).
 - For details and numbers from simulation see Alexander's talk at Trieste.

LHCb outline

• Aim for complementarity w.r.t. ATLAS and CMS:

- Forward acceptance → low masses.
- Excelling vertexing capabilities → low lifetimes.
- Upgraded trigger, tracker and VELO:
 - Instrumentation studies for Phases 1 and 2.
- Massive LLPs decaying to μ + jets:
 - Physics projection studies for yellow report.
- Massive LLPs decaying to jet pairs:
 - Physics projection studies for yellow report.
 - Interest in pile-up studies (jet reco efficiencies).
- Oark photons:
 - Interest in other possible final states.
 - Ability to recast results in other models.

• Extended reach for LLPs (CODEX-b + LHCb):

- New detector to operate interfaced with LHCb.
- Greatly extend reach for LLP searches.

Upgraded trigger, tracker and VELO

- Remove hardware L0 for Phase $1 \rightarrow$ fully software-based trigger:
 - Huge improvements expected for low mass searches (main bottleneck).
 - Develop dedicated lines for displaced jets, di-muons and di-electrons.
- Exploit LHCb tracking capabilities not only long tracks:
 - Trigger on downstream tracks \rightarrow better for LLP ($\leq 2m$) signatures. [LHCb-PUB-2017-005]
 - New tracker for upstream tracks (UT) high granularity, closer to beam pipe.
 - Proposal to add magnet stations (MS) inside the magnet \rightarrow improve low p acceptance.
- Phase 2 VErtex LOcator challenging conditions: [CERN-LHCC-2017-003]
 - Access to shorter lifetimes, better PV and IP resolution, and real-time alignment.
 - Better knowledge of material interactions (dedicated material veto map).
 - Possibility of removing RF-foil for Phase 2 (better IP resolution, no material interactions).

Massive LLPs decaying to μ + jets

- Massive LLP into μ + two quarks (\rightarrow jets):
 - Look for a single DV with several tracks + high p_T muon.
 - Background dominated by $b\bar{b}$ & material interactions.
- Sensitive to several benchmark production models:
 - Focus on the decay of a Higgs-like particle into two LLPs.

- Run 1 results [EPJC (2017) 77:224] and Phase 2 prospects below:
 - Scale signal and background (increase of x-sections) & optimistic assumptions for pile-up.
- Conservative assumptions for jet reconstruction, trigger and material interactions:
 - Better knowledge of material interactions + better jet reconstruction efficiencies for lower masses.
 - Removal of L0 trigger (Phase-I) → much higher trigger efficiencies at the end.

Massive LLPs decaying to jet pairs

• DV with two associated heavy flavour jets:

- $\bullet~$ Most of the cases \rightarrow only one LLP decays inside LHCb.
- Reconstruct DV (LLP R_{xy} as discriminator) & find the jets.
- Background dominated by $b\bar{b}$ & material interactions.
- Sensitive to several benchmark production models:
 - Focus on the decay of a Higgs-like particle into two HV π_{v} .
 - Others, i.e. confining HV sector (multi-jet final state).
- Run 1 results [EPJC (2017) 77:812] and Phase 2 prospects below:
 - Same assumptions as with LLP into μ + jet analysis.
 - Dedicated trigger lines for displaced jets & jet substructure tools to reach lower masses.
 - Pile-up in Phase 2 will probably affect jet reconstruction (studies on-going).

Dark Photons

Search for dark photons decaying into a pair of muons:

- Used 1.6 fb⁻¹ of 2016 LHCb data (13 TeV) [PRL (2018) 120 061801]
- Prompt-like search (up to 70 GeV/c²) \rightarrow displaced search (214 350 MeV/c²).
- No significant excess found exclusion regions at 90% C.L.:
 - \rightarrow First limits on masses above 10 GeV & competitive limits below 0.5 GeV.
 - \rightarrow Small displaced A' region excluded \rightarrow first limit ever not from beam dump.

Dark Photons

- Cover di-electron final states in $D^{*0} \rightarrow D^0 A'(ee)$ decays:
 - \rightarrow Hardwareless trigger is required (softer final state than in the di-muon mode),
 - \rightarrow High statistics \rightarrow get $3 \times 10^{11} D^{0}$ per inverse fb!
- Extend searches model-independently:
 - \rightarrow Recast in other vector models [JHEP 06 (2018) 004]
 - \rightarrow Recast in (pseudo-)scalar models [arXiv:1802.02156]
- Prospected reach for Run III comparison with Belle 2 and other experiments:

Extended reach for LLPs (CODEX-b + LHCb)

- Compact detector for exotics: [PRD 97 (2018) 015023]
 - Box of tracking layers to search for decays-in-flight of LLPs generated at IP8.
 - Interface with LHCb for identification and partial reconstruction of possible LLP events.
- Prospects for several benchmark models studied:
 - Prospects (various detectors) for $B \to X_s \varphi$ (φ as a light scalar) shown below.
 - LHCb has already provided limits for this signature using Run 1 data [PRD 115 (2015) 161802]

- Significant effort to extend our experimental reach and coverage:
 - Keep an excellent detector performance during Phase 2.
 - Cope with the challenging conditions of a high luminosity machine.
 - Develop new successful techniques for a new high luminosity scenario.
- Exploit complementarity of ATLAS, CMS and LHCb:
 - $\bullet\,$ Each detector has unique capabilities \rightarrow acceptance, vertexing, trigger...
 - Make sure no corner of the parameter space remains unveiled.

Is there anything beyond the Standard Model?