
The joy of git
Version control

Literature

• Free book licensed under Creative Commons: Pro Git, find it at
https://git-scm.com/book/en/v2

• Google it, stack overflow, and if all else fails, Pro Git

• Graphics are taken from Pro Git, unless otherwise specified

• http://lhcb.github.io/analysis-essentials has a good section on git

https://git-scm.com/book/en/v2
http://lhcb.github.io/analysis-essentials

Goal

• Teach students how git works
• Git is very useful if you work with code

• Makes you more effective developer

• Redundancy in your backups: harder to lose progress

• Understanding how it works is a great skill to have in general (many people do
not!)

• (Physics) programming courses do not talk about it

• Many open source projects use it: contributing

Outlook

• Part I : How does git work

• Part II : Basic commands

• Part III : Branching

• Part IV : Merging

• Part V : The cool stuff

What is version control

• Management of changes in
documents

• MS office track changes

• Cloud storage systems track
changes

• Working on code

• CVS, Subversion, git

Setting up git

• https://help.github.com/

https://help.github.com/

How does git work (theory)

• Repository (repo) on drive
• Repo contains the history of your project

• Meta data: author, date, etc.

• Data: code and changes

• .git folder

• .gitignore

Jargon

• Repo(sitory): folder containing the code that is tracked by version control

• Remote: server (or network drive) containing a copy of your repo

• Commit: recorded change to your repo

• Hash*: fingerprint of your commit

• Git: version control program

• Github: website where you can host your git repos (owned by MS as of 2018)

• Gitlab: program to run git on your own server (community and enterprise editions)

*Technically a hash is the output of a hash function, a one way function that takes some input and maps it into a fixed length output.

Centralized version control

• One source of truth:
The server

• Have to sync every time
you want to update your
versioning

• My analogy:
classical mechanics, only
the server is right

Decentralized version control

• Every user has their own truth:
their history

• By syncing with the server* you communicate
with other users

• You can work locally, f.ex: on a plane

• You can rewrite your own history (or everyones)

• My analogy: relativistic mechanics, all
observers (users) are right

*You do not need a server, you can use git on network drives.

Basic work flow

Normal file system:
All files are untracked

File tracked:
-Unmodified
-Modified
-Staged (about to updated)

Timelines of versions

• File history

• File diffs

• ‘Just a bunch of pointers’ with file
changes attached to them

Central server: Saving diffs of files

Git: Saving snapshot of all files

Overview of a project history

• Branches with a history: master

• Tag: v1.0

• HEAD: special pointer

• Commit SHA-256: unique
identifier based on previous
and current commit

• Meta-data:
author, committer, message, …

Basic commands

Basic git workflow

• Local
• init: initialize your repository, you only do this once.
• add: add a new file to track, or add a new change to be committed (recorded).
• commit: record your changes to the repository.
• status: get the current status of the repository, like new changes, moved files
• log: look at the repo history
• show: look at the actual changes of a certain commit
• checkout: checkout a file/commit/version/branch
• diff: see the changes made in your folder, or compare with historic changes

• Remote
• clone: copy a remotely hosted repo into a folder on your drive
• push: upload your changes to the remote server, now others can see your changes!
• pull*: get the changes from other users from the remote server, now you can see their changes!

• Git log: look at the commit history

• Unstaging: when you want to remove a file from the commit you are about to make

*Pul l is two commands: fetch and merge, more on this later

If you want to mess around while I present:

$ ssh USER@login.nikhef.nl

USER@login.nikhef.nl's password:

$ git clone /data/antares/users/ljnauta/test_repo

$ git ...

Getting a repo

$ mkdir my_repo

$ cd my_repo

$ git init

$ git clone https://github.com/pandas-dev/pandas

Status and history

• What is HEAD?
HEAD is where you currently are (commit, point in history)

$ git status

$ git log

$ git log --graph --pretty

$ git log --graph --pretty=oneline --decorate --abbrev-commit --all

Ignoring files

• In general you only track code

• You do not want to track all files:
• Compiled files: user makes themselves

• Blobs: not trackable since it’s not plaintext, so diffs are meaningless

• Every folder (or root for whole repo) can have a .gitignore file where
you can add files to ignore by git

• Ignored files can still be added, but until tracked: ignored by `status`

Basic commands

Untracked: file1

$ git add file1

$ git commit

Tracked: file1

Edit file1

$ git add file1

$ git commit -m “changed file1”

$ git status

Basic commands

$ git show c1efc5e

Basic commands

• Git checkout: go through history easily
• Checkout a changed file (but not committed) to the current version:

• Checkout a commit at in the repo history:

• Checkout a different branch to work on (you will end at the tip):

• Checkout a certain version of the repo (can be in the past on a different
branch):

• Checking out a file deletes all your current work

• Checking out a commit only works if there are no changes

$ git checkout file1

$ git checkout f34a200b

$ git checkout my_awesome_branch

$ git checkout v3.14

Undoing your changes and unstaging

• We saw that checkout can fix many things, but depends on commit
history, what about our staging area?

• Oh no, I forgot to add a file! (or made a typo, etc)

$ git commit -m 'initial commit'

$ git add forgotten_file

$ git commit --amend

$ git add file1

$ git status

$ git reset

$ git reset HEAD file1

Remote

• In folder of test repo:

• More on pulling in section Merging

$ git remote –v

$ git pull

$ git push

Branching

Branching

• What is branching?
Branching is way to split up your history
to work on different subjects in parallel.

• Branches emerge when collaborating because histories diverge
between users.

• Why branch as a user?
To separate different subjects/fixes/ideas in the history and to make
changes modular (“bug fix 56” is separated from “functionality 12”)

https://www.atlassian.com/git/tutorials/using-branches/git-merge

Branching

• Default: master branch

Branching

• Make new branch

$ git branch testing

Branching

$ git checkout –b testing

Shorthard for:

$ git branch testing

$ git checkout testing

Note: only works if testing

does not exist

• Make a branch and go there

Branching

$ git add newfile.txt

$ git commit –m “Add newfile with awesome functionality”

Note: we have not pushed/pulled, this is only local!

Branching

• Moving back to master branch

$ git checkout master

Branching

• Now you see histories diverge, and the use of branches

• We need to move code from one branch to another
somehow...

• Next section: merging

$ git add oldfile.txt

$ git commit –m “Change oldfile because of bug Y”

Merging

Merging a branch into master

Merging a branch into master

Merging a branch into master

• Explicit merge: Merging a branch into master (or any other branch)

• Automatic merge: Merging by pulling from remote --> merge commit

• Pulling the original repo into your forked code

• Sending your code from a fork to the original: Merge request

$ git checkout master

$ git merge iss54 master

Note: You will get a vim shell (default)

to write merge commit message (optional)

Merging remote changes: git pull

• Pulling is actually a combination of two commands:
• Fetch: download the changes from remote

• Merge: insert changes into your working directory

• Pull can be confusing: it’s better to use fetch and
merge separately
(Although the author is very hypocritical about this)

Conflicts

• When you pull but someone merged into the file you're working on

• When the diffs in your file touch the same code and there is not one
clear solution

• Who is right? Git can not decide: CONFLICT

https://stackoverflow.com/questions/34814837/git-marks-and-comments-like-head-and

Don't do this:

https://xkcd.com/1597/

The cool stuff

Online dashboard

http://git.km3net.de

http://git.km3net.de/

Stashing

• You made changes but are not ready to commit

• You want to checkout a certain commit: git wants you to commit your
changes

• Save the changes in a stash that can be later be reapplied to your
working directory

$ git stash

$ git pop

Rebase

• Rebase can change the history of your repository
• To change ordering of commits (cluster certain changes)

• To move commits to other branches (cherry-picking, next slide)

• To merge commits into one larger commit

• You can get an interactive shell to make changes

• Changes are applied to your repository

• WARNING: Since you are changing history, do not use this on pushed
changes! If someone has pulled and continues working on it, this will
cause conflicts and even lost work

$ git rebase -i HEAD~3

• Cherry pick:

• Force: overwrite whatever the history is in remote [DANGER ZONE]

• Blame: see who wrote which line

More commands

$ git push origin master --force

$ git blame file1

https://www.ralfebert.de/git/cherry-pick/

Backup: different way of keeping history

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Backup: development models

• Default git model:
• Everyone can pull/push

• Good (enough) for small
projects/not open source

• Can become chaotic because of
bad git practices
(bad messages, generally shit
commits)

Backup: development models

• Used in large projects: linux
kernel, pandas, professional
software development
• High quality commits, clear history,

no bad/useless commits

• Requires good commit messages

• Takes long to merge changes

• Owners of repository spend most
of their time reading code

Backup: development models

• Gitlab model:
• Work privately

• Push to public repository

• Send merge request (pull request on github) to repo manager

