ParticleID for KM3NeT/ORCA Final presentation on my thesis work

Federica Scarcella

Nikhef

September 27, 2018

154 million

15 HILL

Ale

St. Ste

Outline

Introduction Neutrino Mass Hierarchy KM3NeT/ORCA

My Analysis

Variables Particle Identification NMH significance measurement

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusion

Neutrinos can change flavor \triangleright non-zero masses. Masses themselves are unknown $\triangleright \Delta m_{ij}^2 \equiv m_i^2 - m_i^2$.

Neutrino Mass Hierarchy:

- Normal Hierarchy (NH) *m*₁ < *m*₂ < *m*₃;
- Inverted Hierarchy (IH) m₃ < m₁ < m₂.

How is it possible to determine the NMH?

Measuring NMH with Atmospheric Neutrinos

- Natural beam of known composition (ν_e, ν_μ);
- Oscillation pattern distorted by Earth matter effects (hierarchy-dependent);
- Measure E_ν and θ_ν of upgoing neutrinos.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

KM3NeT/ORCA (Oscillation Research with Cosmics in the Abyss)

Measurement of the Neutrino Mass Hierarchy (NMH) detecting atmospheric neutrinos, using Cherenkov detector in the Mediterranean Sea.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

KM3NeT/ORCA Detector

숇

- 1 KM3NeT building block:
 - 115 strings;
 - 18 DOMs/string;
 - 31 PMTs/DOM
- DUs:
 - 200m high;
 - 20m inter-string spacing;
 - 9m spacing between DOMs in vertical direction.

The detection of neutrinos is based on the detection of Cherenkov light produced by relativistic particles emerging from a neutrino interaction with the sea water.

CC ν interactions

- $u_{\mu} + \textbf{\textit{N}}
 ightarrow \mu + \textbf{\textit{X}}$: Track-like
- $\nu_{e} + N
 ightarrow e + X$: Shower-like
- $u_{ au} + \textbf{\textit{N}}
 ightarrow au + \textbf{\textit{X}}$: Shower-like

NC ν interactions

- $\nu_{x} + N \rightarrow \nu_{x} + X$: Shower -like

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Particle Identification (PID)

The events are classified according to their signatures:

- ► Track-like ▷ straight signature;
- ► Shower-like ⊳ point-like compared to the track-like

KM3NeT/ARCA simulation, TeV neutrino energies

KM3NeT/ORCA Analysis

Track/Shower Identification

- Random Decision Forest (RDF);
- ✓ RDF's output ▷ Probability of identifying an event correctly;
- ✓ Cut chosen ⊳ 50%;
- ✓ 2 PID bins ▷ Track or Shower.

At 10GeV:

- ▶ 70% of ν_{μ} CC events as track-like;
- > 90% of ν_e CC events as shower-like.

KM3NeT/ORCA Analysis

Sensitivity Studies

Asymmetry \rightarrow Difference between the number of expected events for NH and IH in the plane $E_{\nu} - \cos \theta$.

$$A = \frac{N_{IH} - N_{NH}}{\sqrt{N_{NH}}}$$

Asymmetry is evident around 5-25 GeV for track-channel and around 3-10 GeV for shower-like.

My Analysis

Steps

- Variables trained;
- ParticleID with BDT;
- NMH significance measurement.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Variables

- Shower Reconstruction MC Algorithm;
- Two energy ranges:
 - *E_ν* < 20*GeV*;
 - $E_{\nu} = 1 100 GeV$.

Why neutrino events with $E_{\nu} < 20 GeV$?

Because for this energy range the difference between NH and IH appears clearly.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Particle Identification (PID)

- Boosted Decision Tree (BDT);
- ► BDT's Output → Probability B/S (range 0-1) divided in 10 parts (0-0.1,...,0.9-1);

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\blacktriangleright\,$ 2 PID bins (track or shower) \rightarrow 10 PID bins.

Each histogram shows the percentage of events that are correctly classified according to the PID.

My Analysis

Sensitivity Studies

Asymmetry plots in $E_{\nu} - \cos \theta$ plane.

Default Method

- Cut on probability range;
- 2 PID bins (track or shower);

イロト イ理ト イヨト イヨト

New Method

- Probability range divided in 10 parts;
- ▶ 10 PID bins.

Asymmetry \rightarrow Significance S of the NMH.

Default Method

$$S_{cut}=\sqrt{S_l^2+S_r^2},$$

where *l* and *r* represent the left part and the right part of the cut.

New Method

S for each of 10 PID bins:

$$S_{tot} = \sqrt{\sum_i S_i^2}$$

where *i* represents the 10 PID bins.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Assumption

- Evaluate the significance
 → Simplification of the study of sensitivity to the NMH;
- No fit of the oscillation parameters (kept fixed);
- Energy and angular resolutions fixed.

Results

Data Set	$S_{cut}[\sigma]$	$S_{tot}[\sigma]$
99 variables	4 (30%)	4,38
99 variables E_{ν}	4,12 (40%)	4,49
7 variables	3,74 (40%)	3,89
7variables E_{ν}	3,82 (40%)	3,95

- High significance value for $E_{\nu} < 20 GeV$;
- Comparing S_{cut} with S_{tot} there is an increase in the significance:
 - 0.38 σ for 99 variables;
 - 0.37 σ for 99 variables and $E_{\nu} < 20 GeV$;
 - 0.15σ for 7 variables;
 - 0.13 σ for 7 variables and $E_{\nu} < 20 GeV$;
- The several PID bins should lead to an increase in the sensitivity for NMH measurement;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Futher studies will included fit of the oscillation parameters.