

Feebly Interacting Massive Particles and their signatures

Geneviève Bélanger

LAPTH Annecy-le-Vieux

See: GB, Boudjema, Goudelis, Pukhov, Zaldivar, 1801.03509

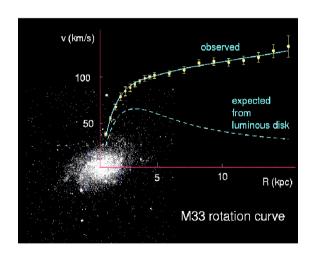
GB, Desai, Goudelis, Harz, Lessa, No, Pukhov, Sekmen, Sengupta, Zaldivar, Zurita, 1811.05478

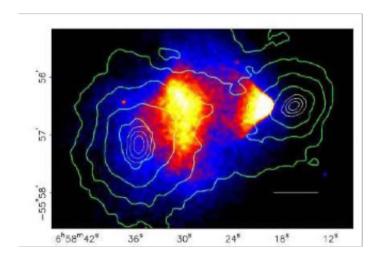
Outline

Motivation

Relic density

Fimps in direct detection

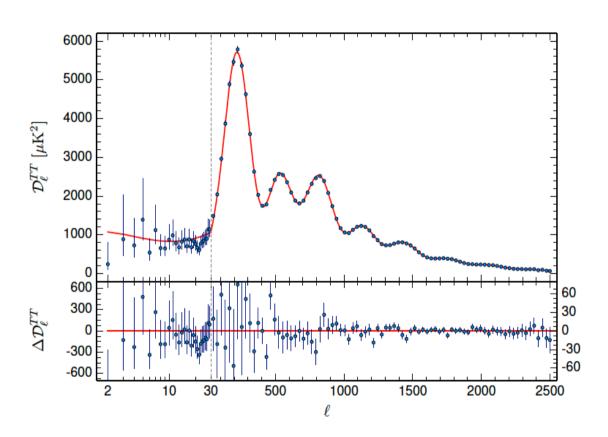

Fimps at colliders


Intro

What do we know about dark matter?

It has gravitational interactions (galaxies – rotation curves-galaxy clusters, - Xray, gravitational lensing)

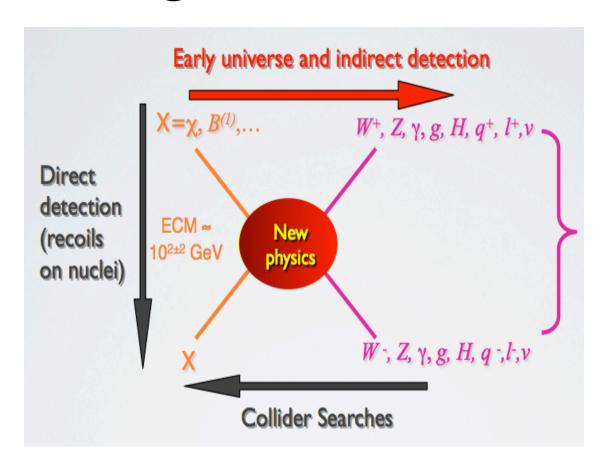
No electromagnetic interactions



It is cold (or maybe warm) and collisionless (or not)

Within ΛCDM model – precisely know its relic density

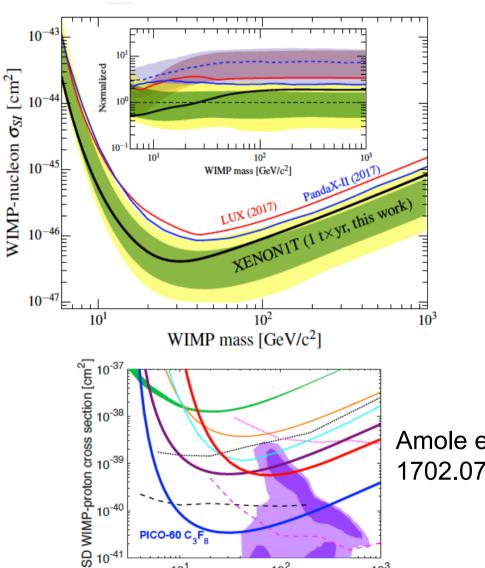
 $\Omega_{cdm} h^2 = 0.1193 + /-0.0014 \quad (PLANCK - 1502.01589)$



Leaves us with a lot of possibilities for dark matter

In particular from the particle physics point of View - Cannot be baryons, neutrinos (too hot)

- A new particle? Two DM? Mass scale? Interaction strength? large self-interactions? linked to baryon-antibaryon asymmetry?
- WIMPs long time favourite: good theoretical motivation, typical annihilation cross-section leads to correct relic density
- WIMPs : elaborate search strategies from astroparticle/cosmo/colliders


Probing the nature of WIMPs

- All determined by interactions of WIMPS with Standard Model
- Specified within given particle physics model

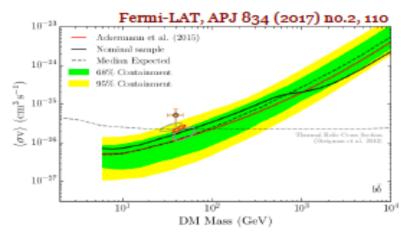
But no signatures of WIMPs

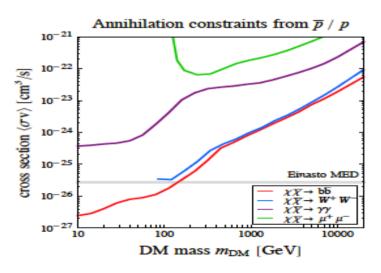
10²

WIMP mass [GeV/c²]

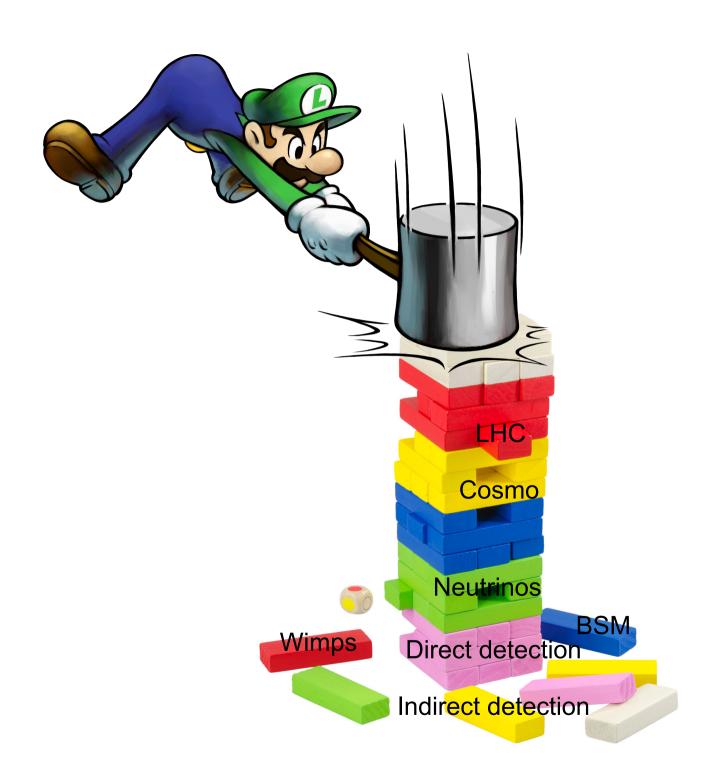
10³

10⁻⁴⁰

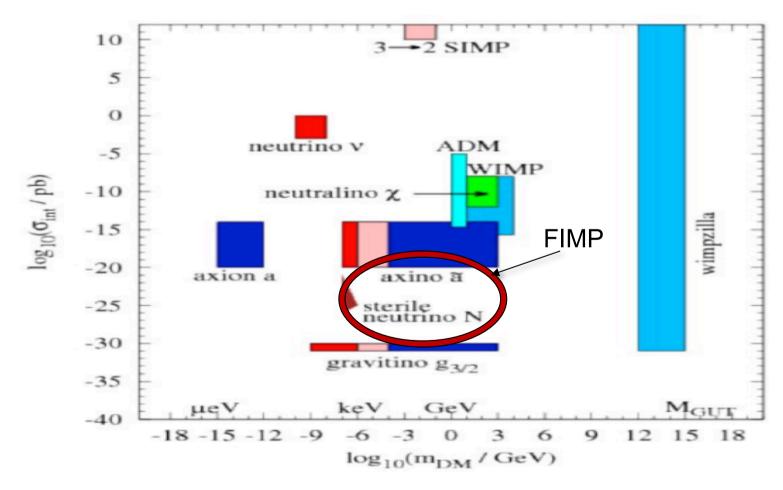

PICO-60 C₂F₀


10¹

Amole et al, 1702.07666


Continuum

Fermi-LAT limit from dSPhs



Giesen et al, 1504.04276

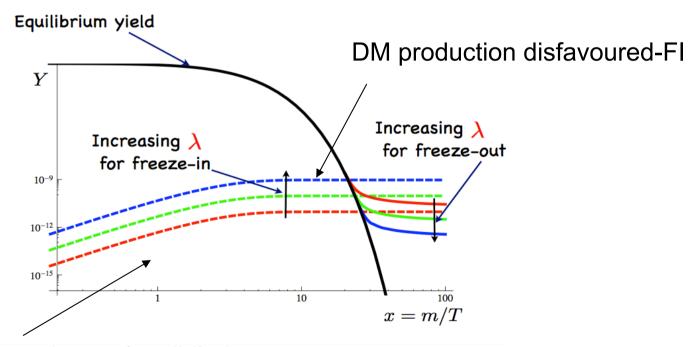
Beyond WIMPs

- Forget about WIMP miracle
- Consider much weaker interaction strength and maybe mass scale

L. Roszkowski

FIMPS (Feebly interacting MP)

- Freeze-in (McDonald, PRL88, 091304 (2002); Hall et al, 0911.1120): in early Universe, DM so feebly interacting that never reach thermal equilibrium
- Assume that after inflation abundance DM very small, interactions are very weak but lead to production of DM

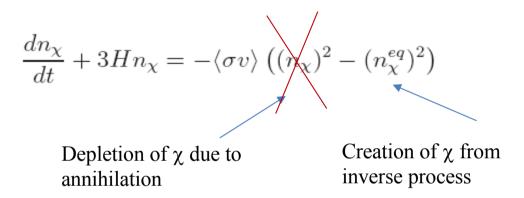


Freeze-in

Freeze-out

FIMPS (Feebly interacting MP)

- Freeze-in (McDonald, PRL88, 091304 (2002); Hall et al, 0911.1120): in early Universe, DM so feebly interacting that never reach thermal equilibrium
- Assume that after inflation abundance DM very small, interactions are very weak but lead to production of DM
- T~M, DM 'freezes-in' yield increase with interaction strength


DM produced from decays/annihilation

In or Out

- Relic density depends on the initial conditions in FI, independent in FO since thermal equilibrium
- In FI: decay of heavier particles can dominate DM production, in FO only DM matters (except for coannihilation ...)
 - Need to track evolution of heavier states (in equilibrium?) dedicated Boltzmann equation
- Relevant temperature can be larger than for freeze-out,
 - FO: $m_{DM}/20$
 - FI : $m_{DM}/3$ or $m_{Med}/3$ or T_R -> cannot always make approximation Maxwell-Boltzmann distribution
- Only one public code for freeze-in: micrOMEGAs5.0: freeze-in GB, Boudjema, Goudelis, Pukhov, Zaldivar, arXiv:1801.03509

Freeze-in

- DM particles are NOT in thermal equilibrium with SM
- Recall

Initial number of DM particles is very small

$$\dot{n}_\chi + 3Hn_\chi = \langle \sigma v \rangle_{X\bar{X} \to \chi\bar{\chi}}(T) n_{eq}^2(T) + n_{eq}(T) \Gamma_{Y \to \chi\chi}(T)$$
 annihilation Decay (X,Y in Th.eq. with SM)
$$n = \int \frac{d^3p}{(2\pi)^3} f(p)$$

Solving for relic density (annihilation)

• Boltzmann eq, 2->2:

$$\frac{dn}{dt} + 3Hn = \int \frac{d^3p_1}{(2\pi)^3 2E_1} \frac{d^3p_2}{(2\pi)^3 2E_2} \frac{d^3p_a}{(2\pi)^3 2E_a} \frac{d^3p_b}{(2\pi)^3 2E_b}
\times (2\pi)^4 \delta^4(p_1 + p_2 - p_a - p_b) |\mathcal{M}|^2 f_1 f_2 (1 \mp f_a) (1 \mp f_b)$$

$$f_i = \frac{1}{\left(e^{\frac{(E_i - \mu_i)}{T}} \pm 1\right)} = \frac{\eta_i}{e^{\frac{E_i}{T}} + \eta_i} \qquad \eta_i = \pm e^{\mu_i/T}$$

• T larger than for freeze-out, cannot always make approximation Maxwell-Boltzmann distribution

$$\begin{split} \frac{dn}{dt} + 3Hn &= \frac{g_1g_2}{8\pi^4}T|\eta_1\eta_2|C_{12}\int ds \; p_{\text{CM}}^2\sqrt{s}\sigma(s)\tilde{K}_1(\sqrt{s}/T,x_1,x_2,0,\eta_1,\eta_2) \\ \\ \tilde{K}_1(x_1,x_a,x_b,\eta_1,\eta_a,\eta_b) &= \frac{1}{4p_{\text{CM}}T|\eta_1|}\int dE_+dE_-\; f_1(1\mp f_a)(1\mp f_b) \end{split}$$

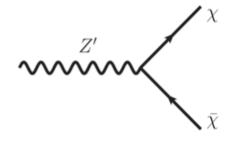
• Effect of statistical treatment : up to a factor 2 (for bosons) smaller for fermions

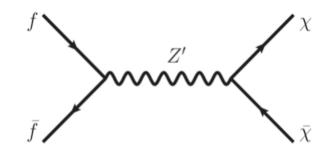
• Solve for Y=n/s
$$\rightarrow$$
 $\Omega h^2 = \frac{m_\chi Y_\chi^0 s_0 h^2}{\rho_e}$

-

Simple example: vector portal

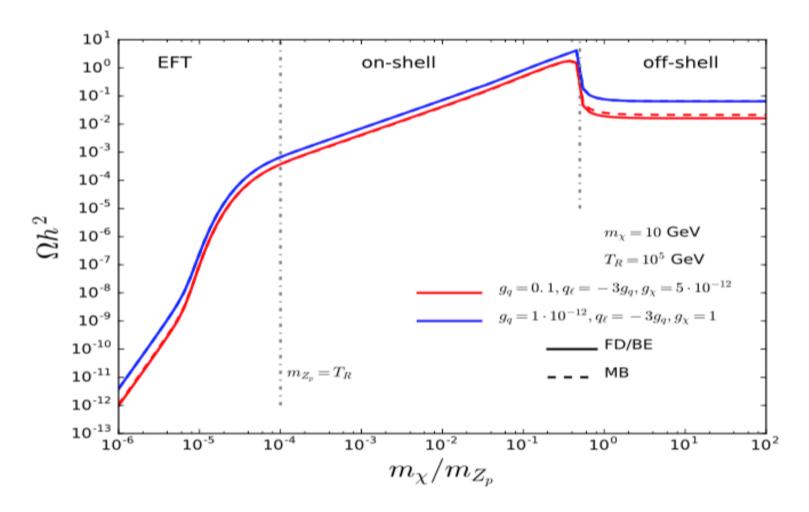
• Z' portal with vector couplings to fermion DM and SM


$${\cal L}_{
m int} = -g_\chi Z'_\mu ar\chi \gamma^\mu \chi - \sum g_q Z'_\mu ar q \gamma^\mu q$$


• 3 regimes

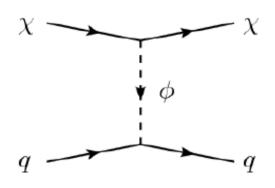
$$m_{Z'} < 2m_\chi < T_R$$

$$2m_{\chi} < T_R < m_{Z'}$$


regime	$\sigma(s)$	Y_{χ}
off-shell	$rac{g_u^2g_\chi^2}{s}$	$g_u^2 g_\chi^2 M_{ m Pl}/m_\chi$
on-shell	$=rac{g_u^2g_\chi^2m_{Z'}}{\Gamma}\delta(s-m_{Z'}^2)$	$g_u^2 g_\chi^2/\Gamma$
EFT	$g_u^2 g_\chi^2 s/m_{Z^\prime}^4$	$g_u^2 g_\chi^2 T_R^3/m_{Z^\prime}^4$

$$g_q \; g_\chi \sim 10^{\text{-}10} \; \text{--} \; 10^{\text{-}12}$$

Simple example: vector portal



Typically get expected relic density both in off-shell ($m_\chi \sim m_{Med}$) and onshell regime ($m_\chi << m_{Med}$) - DM can be very light

Signatures from the sky

- Typical couplings $g_q g_\chi \sim 10^{-10} 10^{-12}$
- Which such weak coupling can we expect any signal in direct or indirect detection?
- Indirect detection a few possibilities with decaying DM
 - Freeze-In production of PeV scalar that decays into neutrinos (Icecube) Roland et al 1506.08195
 - Light Frozen-in DM can lead to Xray/γ-ray signatures
 - E.g. Baek, Po, Park 1405.3730, Essig et al, 1309.4091
- Direct detection: introduce a light mediator to boost the rate

Direct detection

$$\sigma_{SI} \propto rac{g_\chi^2 g_q^2}{(q^2-M_\phi^2)^2}
ightarrow rac{1}{M_\phi^4} \;\; ext{for heavy mediator} \
ightarrow rac{1}{(2m_N E_P-M_\phi^2)^2}$$

For light mediator

- Typical $q^2 \sim 100 \text{MeV}$ (M_{DM}=100GeV)
- For very light mediator $\sigma \sim 1/E_R^2$ (M $\phi < 40$ MeV), recall typical threshold on recoil energy ~ 5 keV
- Spectrum peaks at low recoil energies

$$\frac{dR}{dE_R} = \frac{\rho_0 \sigma_{\rm SI} N_A}{\sqrt{\pi} v_0 m_\chi \mu_{\chi T}^2} F(q^2) \eta(q^2) \times \frac{m_\phi^4}{(q^2 + m_\phi^2)^2},$$

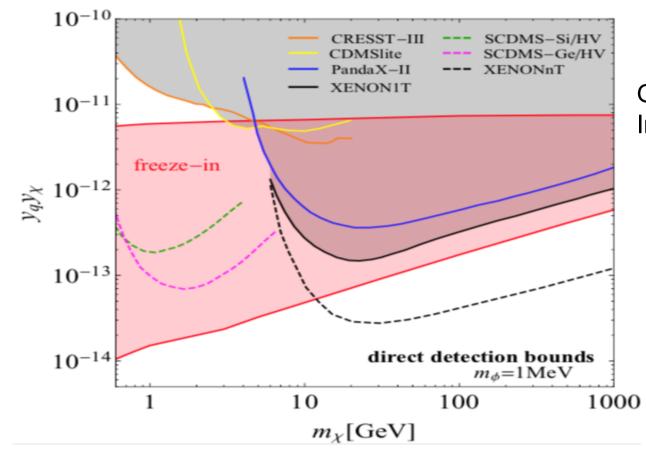
Velocity distribution

• Re-interpretation of DD limits from Xenon ...

Example: a minimal model

• Simplified model with Dirac fermion (DM) with scalar mediator

$$-\mathcal{L}_{\rm int} = y_{\chi}\phi\bar{\chi}\chi + y_{q}\phi\bar{q}q + y_{l}\phi\bar{l}l,$$

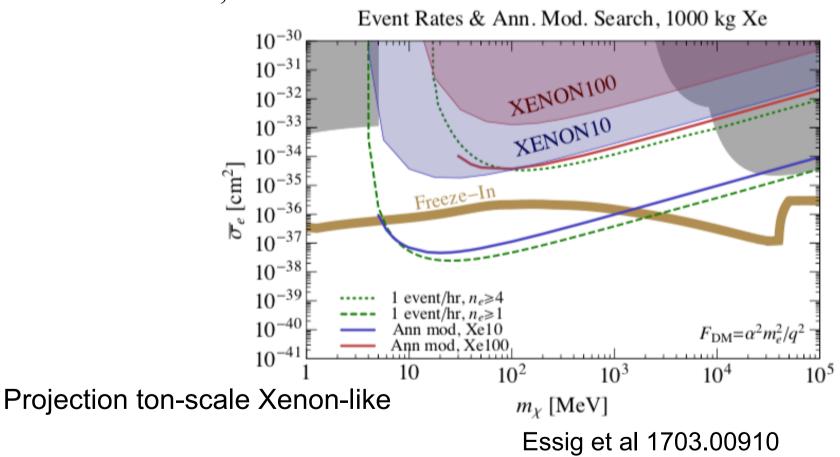

• Two DM production processes (relative contribution depends on couplings and on whether ϕ is in equilibrium with SM)

$$q\bar{q} \to \chi\bar{\chi}$$
 and $\phi\phi \to \chi\bar{\chi}$

- Solve for FI : m_{χ} , m_{ϕ} , y_{q} , y_{χ}
- Can DD probe the region of parameter space that reproduces the relic density?

Direct detection

PRELIMINARY

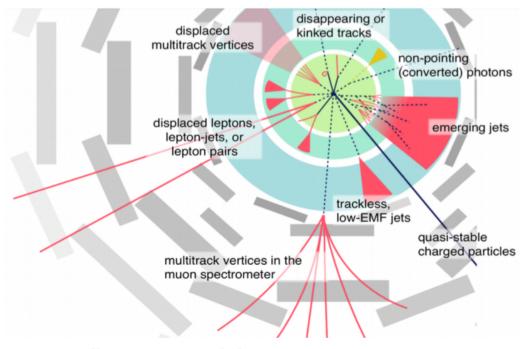

GB, Delaunay, Zaldivar, In preparation

- A large part of FI region is probed/will be probed by DD even for DM at GeV scale
- See also other models, e.g. Hambye et al, 1807.05022

Direct detection with light mediator

DM-electron scattering provides an alternative probe

 results from Xenon, and from SENSEI: a dedicated detector, 1804.00088



What about the LHC?

FIMPs at colliders

- Despite small couplings could lead to some interesting LHC phenomenology
- Most relevant for colliders: DM is produced from the decay of a heavier particle
 (Y) in thermal equilibrium with thermal bath (eg Y is a WIMP but DM is FIMP)
- Y copiously produced, but small coupling→ long-lived
- Long-lived particles (either collider stable or displaced vertices)

The "LLP zoo"

Few examples of displaced vertices in FI: Co, d'Eramo, Hall, Pappadopoulo, 1506.07532 Evans, Shelton 1601.01326 Hessler, Ibarra, Molinaro, Vogl, 1611.09540

H. Russell, LHC LLP workshop

Minimal freeze-in model

- Only one FIMP : DM, discrete Z_2 symmetry \rightarrow stable DM
- DM is a SM gauge singlet no thermalization in the early universe
- Minimality: smallest number of exotic fields (Y) but require some collider signature
 - Higgs portal y $H^2 \chi^2$, DM production depends on y no observable signature
- $Y: Z_2$ odd otherwise mostly coupled to SM suppressed decay to DM pairs
- Consider F vector-like fermion SU(2) singlet, DM: scalar singlet

$$\mathcal{L} = \mathcal{L}_{SM} + \partial_{\mu} s \ \partial^{\mu} s - \frac{\mu_s^2}{2} s^2 + \frac{\lambda_s}{4} s^4 + \lambda_{sh} s^2 \left(H^{\dagger} H \right)$$
$$+ \bar{F} \left(i \not \! D \right) F - m_F \bar{F} F - \sum_f y_s^f \left(s \bar{F} \left(\frac{1 + \gamma^5}{2} \right) f + \text{h.c.} \right)$$

- Free parameters : m_s , m_F , y_s^f (assume λ_s , $\lambda_{sh} <<1$)
- Model also considered for FO, Giacchino et al 1511.04452, Colucci et al, 1804.05068, 1805.10173

Relic density

- DM mainly produced from decay of F (F-> f s)
- F can be either lepton or quark
- DM yield (assuming Maxwell-Boltzmann statistics)

$$Y_s \approx \frac{45 \,\xi \, M_{\rm Pl}}{8\pi^4 \cdot 1.66} \frac{g_F}{m_F^2} \Gamma \int_{m_F/T_R}^{m_F/T_0} dx \ x^3 \frac{K_1(x)}{g_*^s(m_F/x) \sqrt{g_*(m_F/x)}},$$

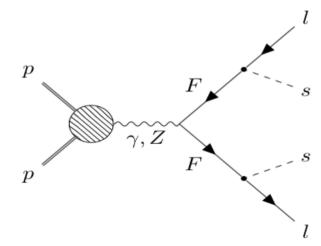
- Γ : partial width to DM, depends on y_s^f
- DM abundance

$$\Omega_s h^2 \approx \frac{m_s Y_s}{3.6 \times 10^{-9} \text{ GeV}}$$

• F lifetime

$$c\tau[\mathrm{m}] \approx 4.5 \; \xi \; g_F \; \left(\frac{0.12}{\Omega_s h^2}\right) \left(\frac{m_s}{100 \; \mathrm{keV}}\right) \left(\frac{200 \; \mathrm{GeV}}{m_F}\right)^2$$

• FI naturally leads to Long-lived particles

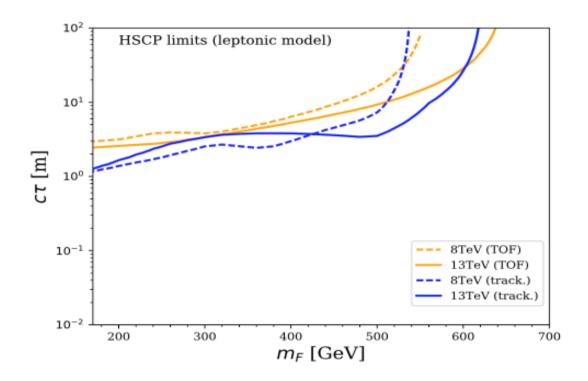

Relic density

- Lower bound on m_S ($m_S > 12 \text{keV}$)
 - Wash-out of small and intermediate scale structures if DM has nonnegligible velocity dispersion – bound from Lyman-α forest observation
- Lowering reheating temperature -> shorter lifetime

$$Y_s \approx \frac{45 \,\xi \, M_{\rm Pl}}{8\pi^4 \cdot 1.66} \frac{g_F}{m_F^2} \Gamma \int_{m_F/T_R}^{m_F/T_0} dx \ x^3 \frac{K_1(x)}{g_*^s(m_F/x) \sqrt{g_*(m_F/x)}},$$

- For very low reheating temperatures possibility to falsify baryogenesis
- *Lifetime from cm to many meters*

Production at LHC

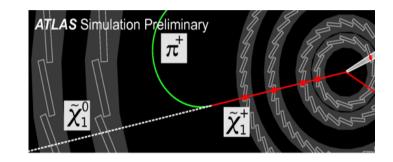

LLP signatures at colliders

- Heavy stable charged particles (HSCP)
- Disappearing tracks
- Displaced leptons
- Displaced vertices

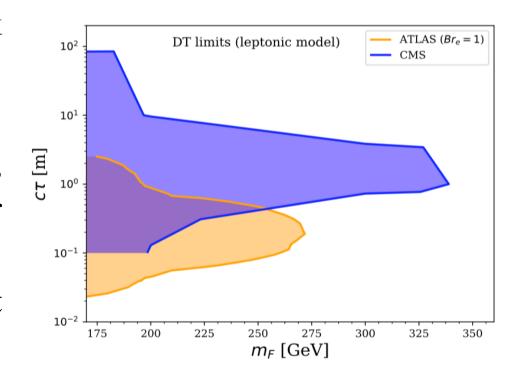
HSCP

- Heavy stable charged particles
 - F colour neutral: anomalous ionizing track in inner tracker
 - F colour triplet: hadronisation in neutral or charged hadrons (Rhadrons)
 - HSCP velocity β <1 (can distinguish HSCP from SM)
 - charged particle produces ionizing track with higher ionization energy loss than SM
 - Time of flight measured with hits in muon chamber is larger than for relativistic muons
- Note if F has low cτ, a fraction can decay within the tracker, rescale the production cross section

HSCP limits

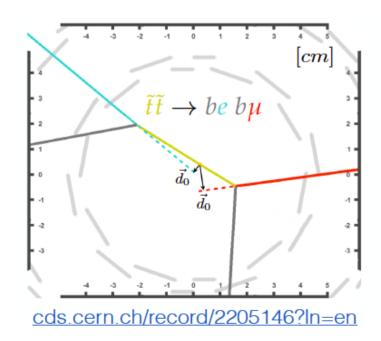

- Recast of CMS 8 TeV (18.8fb-1) and 13 TeV (12.9fb-1) searches:
 - Tracker only (decay outside tracker)
 - TOF: Tracker + time-of-flight (decay outside muon chamber)
- GB et al, 1811.05478

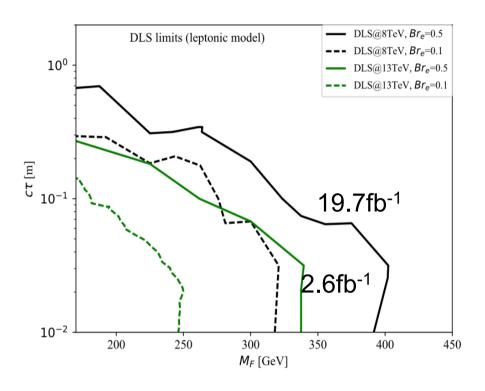
Disappearing tracks

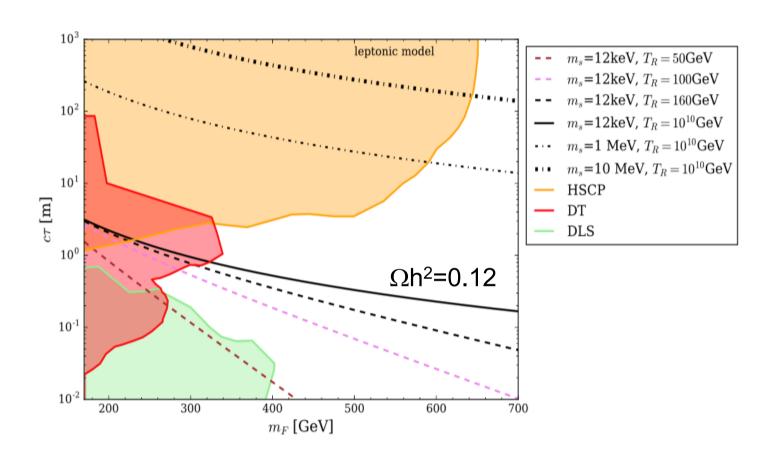

• First designed for wino-LSP (chargino lifetime .15-.25 ns)

$$\tilde{\chi}_1^{\pm} \longrightarrow \tilde{\chi}_1^0 + \pi^{\pm}$$

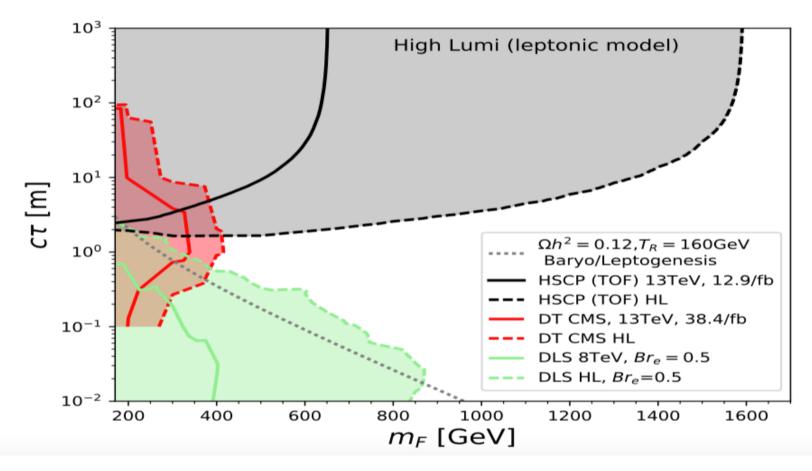
| Leave hits | $\tilde{\chi}_1^0$ | Undetectable | -> disappearing track



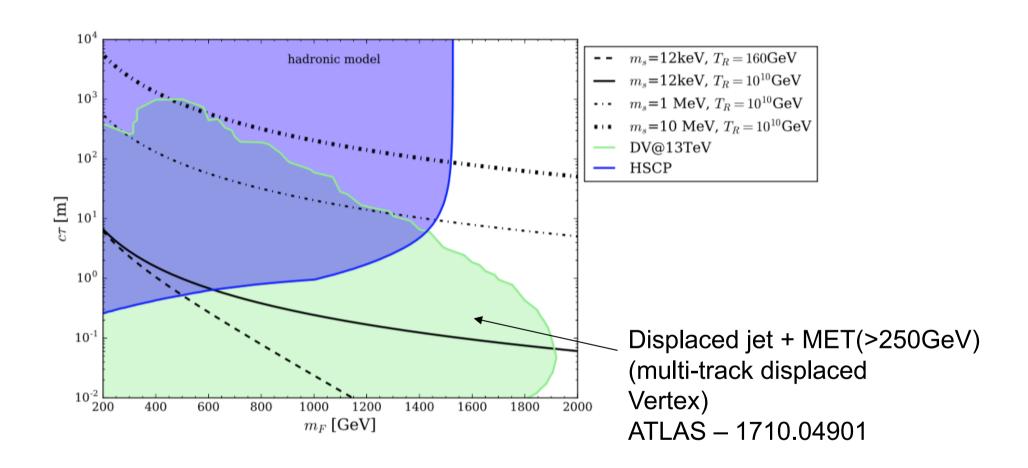

- Trigger: one disappearing track
 + one ISR jet (p_T>100GeV)
- ATLAS can reconstruct tracks down to 12 cm (25 cm for CMS)
- Not as sensitive as HSCP but covers shorter lifetimes


Displaced leptons

- Search for displaced eμ only applies if F decays to both electrons and muons
- Lepton transverse impact parameter closest distance between beam axis and lepton track in transverse plane



LHC constraints (lepton)

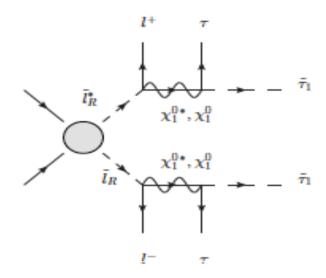

- As DM becomes heavier only HSCP searches relevant
- Lower T_R : expect signatures for smaller $c\tau$

Extrapolating to higher luminosity

Naive extrapolation to 3000fb⁻¹ (extrapolate current expected number of background events)

LHC constraints (quark)

- Region $m_F < 1.5$ TeV fully covered
- Lower T_R : expect signatures for smaller $c\tau$

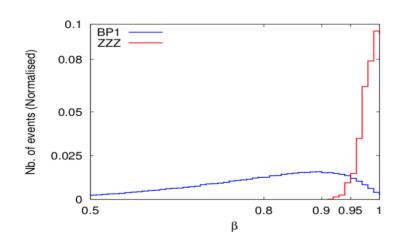

FI beyond simplified models

- FI can also occur in some of the common BSM models, e.g. in supersymmetry with RH sneutrino, gravitino, axino etc..
 - Cheung et al, 1103.4394; Hall et al, 1010.0245; Co et al 1611.05028...
- An example MSSM+RH sneutrino
 - Asaka et al, hep-ph/0612211, Banerjee et al, 1603.08834
- Neutrino have masses RH neutrino + Susy partner well-motivated if LSP then can be DM
- Example MSSM+3 RH neutrinos with pure Dirac neutrino mass
- Superpotential $W = y_{\nu} \, \hat{H}_{u} \cdot \hat{L} \, \hat{\nu}_{R}^{c} y_{e} \, \hat{H}_{d} \cdot \hat{L} \, \hat{\ell}_{R}^{c} + \mu_{H} \, \hat{H}_{d} \cdot \hat{H}_{u}$
- Small Yukawa couplings O(10⁻¹³) (from neutrino oscillation and Planck+lensing +BAO)

• Sneutrino not thermalized in early universe - produced from decay of MSSM-LSP before or after freeze-out

$$\Omega_{\tilde{\nu}_R}^{\text{FO}} = \frac{m_{\tilde{\nu}_R}}{m_{\text{MSSM-LSP}}} \Omega_{\text{MSSM-LSP}} \qquad \Omega_{\tilde{\nu}_R}^{FI} h^2 \simeq \frac{1.09 \times 10^{27}}{g^{*3/2}} m_{\tilde{\nu}_R} \sum_i \frac{g_i \Gamma_i}{m_i^2}$$

- Consider stau as the NLSP live from sec to min : decay outside detector
- LHC signature : stable charged particle NOT MET
- Constraints from BBN : lifetime of stau can be long enough for decay around or after BBN→ impact on abundance of light elements
- Decay of particle with lifetime > 0.1s can cause non-thermal nuclear reaction during or after BBN spoiling predictions in particular if new particle has hadronic decay modes -Kawasaki, Kohri, Moroi, PRD71, 083502 (2005)



- LHC Searches
 - Cascades : coloured sparticles decay into jets + SUSY → N jets + stau
 - Pair production of two stable staus (model independent but lower cross section)
 - Passive search for stable particles
- Stable stau behaves like « slow » muons $\beta=p/E<1$
 - Use ionisation properties and time of flight measurement to distinguish from muon
 - kinematic distribution

MoEDAL detector

- Passive detector
- Array of nuclear track detector stacks
- Surrounds intersection region point 8
- Sensitive to highly ionising particles
- Does not require trigger, one detected event is enough
- Major condition : ionizing particle has velocity β <0.5
- Enough to detect signal

Stau velocity distribution

B. Acharya et al, 1405.7662

 $\mathcal{L} = 3000 \; \text{fb}^{-1}$

Benchmark	$m_{\tilde{\tau}_1}$ (GeV)	N_s
BP1	398	26
BP2	554	7
BP3	655	3
BP6	831	1

Banerjee et al, 1806.04488

Final remarks

- Made enormous progress in searching for DM with direct/indirect and collider searches with WIMPs
- With searches for long-lived and 'collider-stable' particles powerful probes of another class of DM candidates : FIMPs
- Some FIMPs can be tested in (in)direct detection
- Many cosmological constraints on light particles (not in this talk)