

Hunting neutrinos in the Deep Sea Status and prospects of KM3NeT

Leiden University

Dorothea Samtleben

News announced April 2018: 12.7 Mio Euro for KM3NeT NWO's 'Nationale Roadmap Grootschalige Wetenschappelijke Infrastructuur'

What can the neutrino do for us?

- Unique messenger from the distant Universe
- Can unveil new physics
- Could play a role in the issue of Dark Matter

- ⇒ Observations of neutrinos from cosmic sources (TeV-PeV energies)
- ⇒ Observations of neutrinos from interactions of cosmic rays with the atmosphere (GeV-TeV energies)

- Cosmic Neutrinos
- Atmospheric neutrinos
- KM3NeT ARCA/ORCA
- First Data
- ARCA prospects
- ORCA prospects
- Beam option for ORCA (P2O)

Cosmic neutrinos

The visible Universe

Cosmic accelerators provide energy to particles orders of magnitude beyond accelerators on Earth

- What are the sources of the high energy cosmic rays?
- How are particles accelerated?

Multimessenger observations crucial

Galactic: Supernova Remnants (SNRs), Microquasars,...

Extragalactic: Active Galactic Nuclei (AGNs), Gamma Ray Bursts (GRBs), ...

Gamma ray – neutrino connection

- Gamma ray photons can originate from pion decay (hadronic scenario) or synchrotron radiation or inverse Compton scattering (leptonic scenario)
- Currently origin of observed TeV gamma rays from cosmic sources not well known
 - => Neutrino detection unique probe to prove hadronic scenario (presence of protons)

$$p + p \rightarrow \pi^{\pm} + X$$

$$\downarrow \mu^{\pm} + \nu_{\mu}(\overline{\nu_{\mu}})$$

$$\downarrow e^{\pm} + \overline{\nu_{\mu}}(\nu_{\mu}) + \nu_{e}(\overline{\nu_{e}})$$

Neutrinos travel undeflected from the sources => Direct identifcation of cosmic accelerators

Different source scenarios

 $v_e: v_\mu: v_\tau$

'Standard '

-> charged pion decay, muon decay

1:2:0

Muon damped source

-> strong magnetic fields, muon decay suppressed-> pion decay dominant

0:1:0

Neutron beam source

- -> extremely strong magnetic field
- -> cosmic rays heavy nuclei

1:0:0

Note: Also different neutrino/antineutrino ratios

Neutrino oscillations during propagation from source to Earth

=> Flavour ratio not conserved

Neutrino flavor ratio

'Standard' phase space-> Deviations indicate new physics

First preliminary estimate for KM3NeT sensitivity (reconstruction improvements e.g. in tau double bang reconstruction not yet included)

T. Eberl, T. Heid, ICRC 2017 PoS(ICRC2017)1006

Rapidly developing field:

- **2013++** : IceCube detects cosmic neutrinos (excess of high energy neutrinos)
- **2018:** IceCube announces discovery of first cosmic high energy neutrino source
 - => For the first time multimessenger observations including neutrinos!

- 1) High energy neutrino detected at similar time as enhanced gamma-ray flaring of a blazar TXS0506 (independent alerts) -> 3σ
- 2) IceCube scanned archival data at given position
 - -> 3.5σ discovery of a flaring period
 13 signal events in 5 months period

Search in the Mediterranean Sea (ANTARES)

Search for neutrino signal at given position in 9 years

- Fit for signal: n_{sig} = 1.03
- Pre-trial p-value of 3.4% to be compatible with background only
- In the list of 107 pre-selected sources, only two have smaller p-value
- Search for flaring coincident with IceCube flaring periods: No signal found (consistent with flux estimates by IceCube)

Independent verification of IceCube observations desirable

More statistics needed also with full sky coverage

Blue: Track candidates Red: Cascade candidates Circles provide error regions Green circes: 1 and 5 degrees

Atmospheric neutrinos

m^2 $\Delta m^2_{\rm atm}$ $\Delta m^2_{\rm atm}$ ν_2 $\Delta m^2_{\rm sol}$ ν_1

Neutrino beam for free

-> Cosmic ray interactions with the atmosphere

Large statistics for oscillation studies => Access to subtle signatures in oscillation patterns

- Neutrino Mass ordering
- Tau neutrino appearance
- Non-Standard-Interaction
- Sterile Neutrinos
- Earth Tomography

• ...•

Flavor eigenstates are not equal to mass eigenstates

Neutrino telescope energy and baselines in comparison to accelerator/reactor experiments

Neutrino oscillations in matter

Propagation of electron (anti-)neutrinos in the Earth affected by matter potential (Mikheyev-Smirnov-Wolfenstein effect)

Forward scattering on electrons → change of effective mass for the electron neutrinos → change of oscillation pattern

=> Sensitive to Neutrino Mass hierarchy

Matter effects

- Oscillation pattern changes
- Depends on mass ordering
- Pattern for neutrinos with NO is similar to antineutrinos with IO
 => Ratio neutrino/antineutrino determines strength of signature

Matter effects

http://www.apc.univ-paris7.fr/Downloads/antares/Joao/animations/

- Depends on mass ordering
- Pattern for neutrinos with NO is similar to antineutrinos with IO
 => Ratio neutrino/antineutrino determines strength of signature

$$P(\nu_{\mu} \rightarrow \nu_{\mu})$$
 for θ =126

Honda et al, Phys. Rev. D75, 043006 (2007)

10¹

10⁰

10⁻¹

10²

10³

 $E_{v}(\text{GeV})$

• Neutrino flux ~1.3 times higher than anti-neutrino flux

1

10²

10

E. (GeV)

 Neutrino cross section ~2 times higher than for antineutrinos

0 10⁻¹

Interaction cross sections

ν_{μ} event rate Normal Ordering

=> dense detector required

ν_{μ} event rate Inverted Ordering

=> dense detector required

Running since 2007

0.01 km³

1 + 0.008 km³

GIODAL NEUTRINO NETWORK

GVD (Baikal)

1 km³

Lo shore to sho

3 of 8 clusters installed 2015-2018 (to be finished 2021)

Running since 2009

KM3NeT

KM3NeT is a research infrastructure:

- Study of the origin of cosmic neutrinos (high energy neutrinos)
- Measurement of fundamental neutrino properties (low energy neutrinos)
- Deep Sea Observatory (Oceanography, bioacoustics, bioluminescence, seismology)

Single Collaboration Single Technology Single Management

ARCA- Astroparticle Research with Cosmics in the Abyss ORCA- Oscillation Research with Cosmics in the Abyss

KM3NeT LoI , <u>arXiv:1601.07459</u> [astro-ph.IM] Journal of Physics G: Nuclear and Particle Physics, 43 (8), 084001, 2016

KM3NeT Collaboration

Australia Cities of KM3NeT Amsterdam Delft Groningen Leiden Texel Sheffield Utrecht Dublin amberg Warsaw Erlangen Tuebingen Wuerzber Paris Muhlhouse Bucharest Strassbourg Genova Bologna Georgia Barcelona Rome Valencia Bari Thessaloniki Napels Athens Patras Catania Nicosi Oujda 🤄 South Africa

15 Countries >40 Institutes >220 Scientists

Expanding!

Neutrinos are only weakly interacting -> Large detection volume required -> Use natural Ice/Water resources

42°

Cherenkov light from μ

The ANTARES/KM3NeT Neutrino Telescopes

- Running since 2007
- 40km from French coast
- 12 lines,

- First strings deployed 2016
- 2x115 strings Italian site (ARCA)
- 1x115 French site (ORCA)

ORCA	ANTARES	ARCA	
Low energy	Medium energy	High energy	
3 GeV – 50 GeV	10 GeV < E < 1 TeV	E > 1 TeV	
		Ν	

Earth and Sea sciences: Oceanography, Biology, Geology, Climate monitoring

Atmospheric neutrinos Neutrino oscillations Neutrino mass ordering Dark Matter Exotics **Cosmic Sources**

ORCA 115 strings with 18 detectors each 180 m height, 20m string distance

ORCA Phase-2 footprint

ARCA phase-1 will be $\approx 0.1 \text{ km}^3$

- 31 3" PMTs
- Light reflector rings
- LED beacon
- acoustic piezoelectric
- Tiltmeter/compass
- Gbit/s fibre DWDM for data transmission
- Hybrid White
 Rabbit for time
 synchronization

- Photocathode corresponding to 3 10" PMTs
- Digital photon counting
- Directional information

- 31 3" PMTs
- Light reflector rings
- LED beacon
- acoustic piezoelectric
- Tiltmeter/compass
- Gbit/s fibre DWDM for data transmission
- Hybrid White
 Rabbit for time
 synchronization

- Photocathode corresponding to 3 10" PMTs
- Digital photon counting
- Directional information

Detector production

Currently:

- 7 DOM production sites
 -> 5-12 DOMs/week/site
- 4 DU production sites
 -> 1 DU/month/site

More sites getting ready

... first steps of the first DOMs (2014)

ATLAS

Once upon a time ...

experiment

218 of 392 DOMs produced at Nikhef 6 of 9 strings produced at Nikhef

First light for the first full string at the ARCA site (December 2015)

Deployment of first ORCA string September 2017

۲

After successful deployment of first ORCA line

THE

CASTOR 02

ORCA's friends: Pilot whale escort!

ARCA

- 3 strings deployed Dec 2015 & May 2016
- 2 out of 3 operated, string #3 with short in power system, recovered
- Improvements in seabed network on going; String deployment will resume end 2019

ORCA

- First string deployed in Sept 2017
- Cable problem, replacement October 2018
- Deployment of 5 (existing) lines planned afterwards this year

Background in the Seawater

Cherenkov light related to the radioactive decay of ⁴⁰K dissolved in the sea water

- \Rightarrow Main signal on PMTs from ⁴⁰K
- → Homogeneous/isotropic signal
 - -> excellent calibrator!

$${}^{40}\text{K} \rightarrow {}^{40}\text{Ca} + e^- + \overline{\nu}_e \qquad (89.3\%)$$

$${}^{40}\text{K} + e^- \rightarrow {}^{40}\text{Ar}^* + \nu_e \qquad (10.7\%)$$

$$\hookrightarrow {}^{40}\text{Ar} + \gamma$$

distribution of the time difference between hits on two adjacent OMs)ANTARES)

A. Albert et al., EPJC 78 (2018) 669

Longterm monitoring of efficiencies in ANTARES (9 years) -> Excellent stability, ~20% efficiency loss

KM3NeT: Calibration using potassium decay in sea water

Single rate on one PMT: 6kHz 2-fold coincidence rate on a DOM: 500Hz

Correlated signal between PMT pairs:

- Height => Efficiency determination
- Position => Time calibration (nanosecond accuracy)
- Width => Time spread of PMT

Coincidence size on a DOM: Low coincidences: ⁴⁰K High coincidences: muons

Rate of high coincidences Proportional to muon rate => Measure depth dependence of muons

Different neutrino flavor signatures

No distinction between neutrinos/antineutrinos Flavor identification not always uniquely possible Excellent scattering properties in water:

Narrow time residuals (comparing expected time of direct signal with measured time

Simulation of high energy muon

First neutrino analysis

82 days of data taking with first ORCA line

Selected Neutrino Candidate

Evt: id=11163 run_id=2973 #hits=46 #mc_hits=0 #trks=0 #mc_trks=0

KM3NeT/ARCA prospects

KM3NeT/ARCA

Tracks

Angular resolution

Energy resolution

KM3NeT/ARCA

'Double Bang' Tau neutrino signature identifcation: Resolution of flight distance

From Resconi/Heijboer ICRC 2017

Cosmic diffuse flux

Investigate IceCube flux (assume isotropic and flavour symmetric) $\Phi(E) = 1.2 \cdot 10^{-8} (E/1 \text{ GeV})^{-2} \exp(-E/3 \text{ PeV}) \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

• Tracks

Pre-cuts on $\theta_{zen} > 80^{\circ}$, reconstruction quality parameter, number of hits (proxy for muon energy)

• **Cascades** Containment of vertex

All sky analysis based on BDT and maximum likelihood.

Discovery at 5σ (50% probability) in 6 months of ARCA

Sensitivity to Point Sources

KM3NeT:

- Complementary view on the sky to IceCube
- Better angular resolution for all flavours than IceCube
- Detection of sources feasible within 5 years

Multimessenger network

Follow-up also of Gravitational Wave Candidates:

Binary neutrino star merger GW170817:

Depending on assumed environment model predictions for neutrino observations can vary (jet angle)

=> Optimistic scenarios close to current sensitivity limits

KM3NeT/ORCA prospects

KM3NeT/ORCA

Angular resolution

Energy resolution

Inelasticity (shown for v_e CC events)

Neutrinos and antineutrinos have different inelasticity distributions => Distinction neutrino/antineutrino could be (limited) feasible

Not yet used in v NMO evaluation, improvement for sensitivity expected

Effective Mass

- New trigger -> enhanced sensitivity at lower energies
- v_{μ} , v_{e} reaching instrumented mass (8Mton) at 10GeV
- v_{μ} larger effective mass at higher energies due to long track length (sensitive to larger volume around the detector)

Flavour Identification

- Discrimination of track-like ($\nu_{\mu}^{\ \mbox{CC}}$) and cascade-like ($\nu^{\mbox{NC}}$, $\nu_{e/\tau}^{\ \mbox{CC}}$) events
 - Classification uses "Random Decision Forest"
 - Better than 80% above 10 GeV for all channels but $\, \nu_{\mu}^{\ \ \text{CC}}$
 - Improvements with Deep Learning underway

Recap: Oscillation pattern to measure (ν_{μ})

Detector effects will smear the pattern:

- Energy/Angular resolution
- Flavour identification

Reconstructed events

channel	events/y	channel	events/y
v_e CC	14700	v_{τ} CC	2900
\bar{v}_{e} CC	5700	$ar{\mathbf{v}}_{ au}$ CC	1300
v _u CC	21300	v NC	5300
$\bar{v}_{\mu}^{\mu}CC$	9900	$ar{\mathbf{v}}$ NC	1500

Event distribution for 3 years

Asymmetry between NO and IO

$$\chi^{2} = \frac{(N_{NO} - N_{IO}) | N_{NO} - N_{IO} |}{N_{NO}}$$

Cascades contribute most of sensitivity to the neutrino mass ordering

Sensitivity determination

To optimally distinguish between IH and NH: Likelihood ratio test with nuisance parameters

- 1) Create pseudo-experiments for given set of oscillation parameters
- 2) Fit parameters assuming NH
- 3) Fit parameters assuming IH
- 4) Evaluate Test statistics distribution: $\chi 2_{NO} \chi 2_{IO}$

Systematics

		true value	constraint
ΔM^2 (eV ²)	fitted	2.48 10 ⁻³	free
$\Delta m_{21}^{2} (eV^{2})$	fix	8.53 10 ⁻⁵	-
) ₁₃ (°)	fitted	8.42	0.26
) ₁₂ (°)	fix	33.4	-
) ₂₃ (°)	fitted	38-52	free
CP	fitted	0,2π	free
lux spectral index	fitted	0	free
ν/v skew	fitted	0	0.03
racks normalization	fitted	1	free
Cascades normalization	fitted	1	free
VC events normalization	fitted	1	0.1

Constraints on oscillation parameters

Asimov ($\Delta\chi 2$) and LLR sensitivities as function of θ_{23}

Fit in 2 'flavour' bins (track/shower), no separation by inelasticity
 ⇒ Improvements expected by increasing number of bins
 (e.g. flavour 'probability', inelasticity, energy resolution, ...)

2-6 σ median sensitivity after 3 years depending on oscillation parameters \Rightarrow External constraints on oscillation parameters can help improving the sensitivity

Timelines (to be updated)

NOVA

Currently NOVA: 1.8 σ preference for NO and θ_{23} upper octant

For normal hierarchy 3σ for > 30% of true δ values by 2024

ν_τ appearance

- Flux normalisation constrained (3 σ) within 20% after 1 year
- Exclusion of 20% deviation from expected standard model flux normalisation with 5 σ after 3 years

Sterile neutrinos

• With 1 year of data ORCA is sensitive to $|U_{\tau 4}|^2$ values smaller than current limits set by SK

• Fitted: 4 syst. + 2 osc. (θ_{23} , ΔM^2)

Non-Standard Interactions (NSI)

$$\begin{pmatrix} |\varepsilon_{ee}| < 4.2 & |\varepsilon_{e\mu}| < 0.33 & |\varepsilon_{e\tau}| < 3.0 \\ |\varepsilon_{\mu\mu}| < 0.068 & |\varepsilon_{\mu\tau}| < 0.33 \\ |\varepsilon_{\tau\tau}| < 21 \end{pmatrix}$$

Rept. Prog. Phys. 76, 044201 (2013)

With only 1 year of data, ORCA sensitive to NSI effects below these limits:

- Fitted: 4 syst. + 2 osc. (θ₂₃, ΔM²)
- 95% C.L. in $(|\varepsilon_{ee}|, |\varepsilon_{e\tau}|, |\varepsilon_{\tau\tau}|)$ space \rightarrow 2D projection for $|\varepsilon_{ee}| = 0$
- SK + K2K limits from *arXiv:0506143*

Beam option for ORCA

Neutrino Beam: Protvino – ORCA (P2O)

IHEP/Protvino, founded 1967 100km South of Moscow

Baseline 2588km Beam inclination : 11.7° (cos θ = 0.2)

First meetings at the site with KM3NeT delegation At VLVNT 2018 (1-4 October in Dubna) further planning for future steps

- Both Neutrino Mass Hierarchy and CP violation accessible
- No degeneracies, small cross section systematics
- After 6 years non CP-violation excluded for 35% of δ_{CP} values at about 3σ
- High precision measurement of δ_{CP} within few years (with 450kW)

- Both Neutrino Mass Hierarchy and CP violation accessible
- No degeneracies, small cross section systematics
- After 6 years non CP-violation excluded for 35% of δ_{CP} values at about 3σ
- High precision measurement of δ_{CP} within few years

Comparison of Long Baseline Projects

Comparison of Long Baseline Projects

Main Signal : Appearance of $v_e : P(v_\mu \rightarrow v_e)$

Summary

- Construction of the KM3NeT detector started
- Good prospects for measurements of neutrino mass ordering on competitive time scale and to detect cosmic neutrino sources
- KM3NeT will offer new options to explore many further topics
 - Galactic Supernovae, Dark Matter, Non-standard interactions, Earth tomography, surprises ...

Search for Dark Matter

Dark Matter particles accumulate in heavy objects (Sun, Galactic Center, Earth)
→ Annihilation will produce 'standard' particles -> decays produce neutrinos

Dark Matter

Competitive for Spin Dependent coupling

Reconstruction Methods

Different flavours and interactions lead to different signatures in the detector

- Dedicated reconstruction methods for tracks and cascades
- 8 parameters are determined:

Time, position (3), direction (2), energy, inelasticity

- Step by step procedure
 - Hit selection (time correlations)
 - Vertex & Directional fit (timing)
 - Energy & inelasticity fit (light yield & direction/vertex)

Share of costs

- Shore station (incl. computing)
- Deep-sea cable network
- Deployments
- Strings (without PMTs)
- PMTs (incl. base and reflector)