CENTRAL EXCLUSIVE PRODUCTION OF J/ψ MESONS IN LHCb

NNV Annual meeting November 2nd, 2018

Cristina Sánchez Gras

WHAT IS CENTRAL EXCLUSIVE PRODUCTION?

- CEP event \rightarrow diffractive process of the form $pp \rightarrow p + X + p$
- Looks like this at LHCb:

Inelastic pp collision

Quasi-elastic pp collision: $\Upsilon \rightarrow \mu \mu$ CEP

WHAT IS CENTRAL EXCLUSIVE PRODUCTION?

- CEP event \rightarrow diffractive process of the form $pp \rightarrow p + X + p$
- Mediated by the exchange of a colourless object:

• Pomeron: two or more gluons in a colour-singlet state

WHAT IS CENTRAL EXCLUSIVE PRODUCTION?

- CEP event \rightarrow diffractive process of the form $pp \rightarrow p + X + p$
- Mediated by the exchange of a colourless object:

• Pomeron: two or more gluons in a colour-singlet state

WHY CEP?

- Measure the $J/\psi \rightarrow e^+e^-$ differential cross-section at $\sqrt{s} = 13$ TeV
- → Have a high precision measurement of the electron reconstruction for future analyses at LHCb by measuring $R_{J/\psi} = \frac{d\sigma(J/\psi \rightarrow \mu^+ \mu^-)}{dy} / \frac{d\sigma(J/\psi \rightarrow e^+ e^-)}{dy}$ $(\sigma_{J/\psi \rightarrow \mu^+ \mu^-} \text{ already measured, [LHCB-PAPER-2018-011]})$

WHY CEP?

- Measure the $J/\psi \rightarrow e^+e^-$ differential cross-section at $\sqrt{s} = 13$ TeV
- → Have a high precision measurement of the electron reconstruction for future analyses at LHCb by measuring $R_{J/\psi} = \frac{d\sigma(J/\psi \rightarrow \mu^+ \mu^-)}{dy} / \frac{d\sigma(J/\psi \rightarrow e^+ e^-)}{dy} (\sigma_{J/\psi \rightarrow \mu^+ \mu^-})$ already measured, [LHCB-PAPER-2018-011])
- Recently: hints of lepton flavor universality violation in $B^{+(*)} \rightarrow K^{+(*0)}ll \ (l = e, \mu)$

WHY CEP?

Almost background-free events

 Allows for investigation on the electron reconstruction and Bremsstrahlung recover algorithm

$J/\psi \rightarrow e^+e^-$ IN CEP: Backgrounds

• Three main types of background:

Cristina Sánchez Gras

6

 $J/\psi \rightarrow e^+e^-$ IN CEP: HeRSCheL

• **LHCb**: full coverage in $2 < \eta < 5$, partial for $-3.5 < \eta < -1.5$

Cristina Sánchez Gras

(HeRSCheL: High Rapidity Shower Counters for LHCb)

6

15

 η

n=0

 η of particle

$J/\psi \rightarrow e^+e^-$ IN CEP: HeRSCheL **LHCb**: full coverage in $2 < \eta < 5$,

- JINST 13 (2018) no.04, P04017]

2008 JINST 3 S08005]

$J/\psi \rightarrow e^+e^-$ IN CEP: Bremsstrahlung

• CEP allows for investigation on the electron reconstruction and Bremsstrahlung recover algorithm

$J/\psi \rightarrow e^+e^-$ IN CEP: Bremsstrahlung

The mass shape is dependent on the Bremsstrahlung correction
 → we split the data into three "categories"

$J/\psi \rightarrow e^+e^-$ IN CEP: Rapidity bins

• We also split the data into 10 equally spaced y bins in the range 2 < y < 4.5

 \rightarrow There are many more events in the central region

$J/\psi \rightarrow e^+e^-$ IN CEP: Electron PID

- Bumps around 700 and 1000 MeV/c² \rightarrow probably not *e*
- Check PIDe for e^+ , e^- in that region
- \rightarrow Perform a cut on PIDe > 3.5

$J/\psi \rightarrow e^+e^-$ IN CEP: p_T^2

- We fit the ${p_T}^2$ distribution
- In diffractive processes, signal is expected to be $\propto \exp(-p_T^2)$

• We tried different curves, need to study further

OUTLOOK

- CEP of J/ψ mesons is a great scenario for studying electron reconstruction
- More work needed until calculating

$$R_{J/\psi} = \frac{d\sigma(J/\psi \to \mu^+\mu^-)}{dy} / \frac{d\sigma(J/\psi \to e^+e^-)}{dy}$$

• Extend studies on HeRSCheL data, start producing MC samples

- Thanks to Álvaro Loya Villalpando and Pieter Braat for their work during their stay as summer students ^(C)
- Expect exciting results in some months!

Summer Land

THANK YOU FOR YOUR ATTENTION!

HeRSCheL

$J/\psi \rightarrow e^+e^-$ IN CEP: HeRSCheL

- Use the quantity $\log(\chi^2_{HRC})$, where $\chi^2_{HRC} = \sum \chi^2_i$, $\chi^2_i = B_0$, B_1 , B_2 , F_1 , F_2
- For the $\sigma_{J/\psi
 ightarrow \mu^+ \mu^-}$ studies:

• What we see, divided in 3 run ranges:

- Protons interacting outside of LHCb after triggering the detector?
- Protons interacting with beam gas before IP inside LHCb?

$J/\psi \rightarrow e^+e^-$ IN CEP: Electron PID

• Some unexpected bumps around 700 and 1000 MeV/c² \rightarrow probably not *e*

