The way to new physics through the single top quark

Marcel Vreeswijk, **Marc de Beurs** (*ATLAS*) Eric Laenen, Eleni Vryondiou (*Theory*)

arXiv:1807.03576

2 November 2018

New Physics?

- SM is not the end
 - Gravity
 - Dark Matter
 - Matter anti-Matter
- In need of new physics
- ▶ Which theory is next?
 - SUSY
 - string theory
 - composite Higgs
 - leptoquarks
 - ...

- Indirect search
- Model independent
- Incorporates symmetries
- Precision era (lots of data)

ef

Nl

How does it work

- Every operator is a vertex (a blob)
- Only with enough energy we can resolve it
- We use it all the time!
- Particle Physics example \rightarrow beta-decay

Ni

nef

Single Top Quark

Nikhef

- ▶ Top is the heaviest "known" particle
- Decay length is shorter then the QCD scale
- Single tops are polarized
- Same vertex in production and decay

- \blacktriangleright W only couplings to left-handed particles \rightarrow Top is left-handed
- Spin points along direction spectator jet
- Angular distributions are correlated to the polarization

Polarized Top

Polarization Angles

$$\frac{1}{\Gamma_{\tau}} \frac{d\Gamma}{d(\cos\chi_{i}^{t})} = \frac{1}{2} \left(1 + P\alpha_{i} \cos\chi_{i}^{t} \right) \qquad \alpha = \text{spin analysing power}$$

Angle definition in top rest frame

Angular correlation of top spin

Taken from Mahlon 2000

Marc de Beurs

NP through the top quar

Polarized Top

 $\alpha_1 = 1.00$

 $\alpha_{\text{long}} = 0.55$

 $\alpha_{left} = -0.04$

Polarized Top decay (taken from Research Proposal)

Interference between W helicity states (taken from *Mahlon 2000*)

0.0

 $\cos \chi_1^t$

Total

W-Long

W-Left

0.5

 $\alpha_{\rm I} = 1?$

1.0

0.8

0.6

0.4

0.2

0.0 -1.0

-0.5

 $(1/\Gamma_{\rm T}) \, \mathrm{d}\Gamma/\mathrm{d}(\cos\chi_{\rm L}^{\rm t})$

1.0

EFT in Single Top

Sensitivity to NP

 Sensitive to the qQ operator at high lepton pT

Nik

nef

► NLO not just a normalisation → shape effect

Sensitivity to NP

- Polarization angles sensitive to New Physics
- ► Able to distinguish between different operators
- Imaginary part of tW \rightarrow CPV?

Marc de Beurs

NP through the top quark

- Measurement in ATLAS
- We are good in measuring angles!
- Not possible to generate every coupling value
- Morphing!

Morphing

Modelling a continuous signal in a multidimensional space of coupling parameters

How does it work

- Generate template samples
- Obtain values for all the terms
- Reweigh each bin

ATL-PHYS-PUB-2015-047

NP through the top quar

EFT is the way to go in precision physics

- Indirect search
- Model independent
- Incorporates symmetries
- ▶ Single Top is a rich process \rightarrow Polarization Angles
- Sufficient sensitivity to New Physics
- ► Morphing technique to describe full coupling parameter space
- Measurement in ATLAS

Stay Tuned

- Truth distributions
- Only scale + PDF uncertainties
- Background is SM t-channel only
- Selection cuts:
 - \blacktriangleright leptons: $p_{T}^{\prime}>10$ GeV and $|\eta^{\prime}|<2.47$
 - \blacktriangleright jets: $p_T^j>20~{\rm GeV}$ and $|\eta^j|<4.5$

		LO		NLO				
Operator	Coupling value	$\sigma \pm {\sf scale} \pm {\sf pdf} \; [{\sf pb}]$	$\Gamma_{top} \; [GeV]$	$\sigma \pm {\sf scale} \pm {\sf pdf} \; [{\sf pb}]$	$\Gamma_{top} \; [GeV]$			
SM	-	$123 \ \frac{+9.3\%}{-11.4\%} \frac{+8.9\%}{-8.9\%}$	1.49	137 $\frac{+2.7\%}{-2.6\%} \frac{+1.2\%}{-1.2\%}$	1.36			
$O^{(3)}_{arphi Q}$	1	$137 \ \tfrac{+9.3\%}{-11.4\%} \tfrac{+8.9\%}{-8.9\%}$	1.67	154 $\frac{+2.3\%}{-2.3\%} \frac{+1.2\%}{-1.2\%}$	1.52			
$O^{(3)}_{qQ,rs}$	-0.4	$172 \ \frac{+8.7\%}{-10.8\%} \frac{+8.9\%}{-8.9\%}$	1.49	$190 \tfrac{+2.4\%}{-1.8\%} \tfrac{+1.1\%}{-1.1\%}$	1.35			
$\operatorname{Re}\left(O_{tW}\right)$	2	$132 \ \tfrac{+9.3\%}{-11.4\%} \tfrac{+8.8\%}{-8.8\%}$	1.83	148 $\frac{+2.3\%}{-2.5\%} \frac{+1.2\%}{-1.2\%}$	1.68			
$\mathrm{Im}\left(O_{tW}\right)$	1.75	$125 \ \tfrac{+9.2\%}{-11.4\%} \tfrac{+8.9\%}{-8.9\%}$	1.51	140 $\frac{+2.3\%}{-2.5\%} \frac{+1.2\%}{-1.2\%}$	1.38			

The deviations lie within the uncertainty of recent single top measurements

Polarized Top

 $\vec{p_q}$ is the direction of the spectator quark and $\vec{p_q}$ is the direction of the initial quark which is taken as the beam axis

Aguilar 2014

NP through the top quark

Polarized Top

W Helicity fractions

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta} = \frac{3}{8}\left(1+\cos\theta\right)^2 \cdot F_R + \frac{3}{8}\left(1-\cos\theta\right)^2 \cdot F_L + \frac{3}{4}\sin^2\theta \cdot F_0$$

 $\theta = {\rm angle} \ {\rm between} \ \ell$ in W rest frame and W in the t rest frame.

W Helicity fractions

 $\vec{p_W}$ is the direction of the W boson and $\vec{s_t}$ that of the top quarks spin both in the rest-frame of the top quark

Aguilar 2010

EFT in Single Top

Using same notation as Zhang 2016

(2)

(3)

(4)

Morphing example

ATL-PHYS-PUB-2015-047

What do we have?

Number of samples

iniber of samples					
		n _p	n _d	n _s	N
	-	1	0	3	31

Narrow width approximation

$$\frac{1}{(p^2 - M_{\rm top}^2)^2 + M_{\rm top}^2 \Gamma_{\rm top}^2} \xrightarrow{(\Gamma_{\rm top}/M_{\rm top} \to 0)} \frac{\pi}{M_{\rm top} \Gamma_{\rm top}} \delta(p^2 - M_{\rm top}^2) \qquad (5)$$

Top width and multiple EFT insertions

Also a shape effect Noticeable for high C

Nik

hef

Top width and multiple EFT insertions

$$\sigma(\textit{pp}
ightarrow \textit{Wbj}) = \sigma(\textit{pp}
ightarrow \textit{tj}) \, rac{ \mathsf{\Gamma}(t
ightarrow \textit{Wbj}) }{ \mathsf{\Gamma}_{ ext{top}} }$$

Nik[hef

(6)