

university of groningen

kvi - center for advanced radiation technology

# Comprehensive study of proton-deuteron breakup channel

Hajar Tavakoli-Zaniani



# outline

- > Introduction
- > Experimental setup
- > Results
- > Conclusion





# Two Nucleon Force (2NF)

# 1935 Yukawa's meson theory (2NF)

Theory :

- One Pion Exchange Model
- One Boson Exchange Model
- **Heavier** Meson Exchange e.g.  $\rho$  and  $\omega$





# Two Nucleon Force (2NF)

# 1935 Yukawa's meson theory (2NF)

#### Theory :

- One Pion Exchange Model
- One Boson Exchange Model
- **Heavier Meson Exchange e.g.**  $\rho$  and  $\omega$

## **NN Force models**

- ✓ Nijmegen I
- ✓ Nijmegen II
- ✓ Reid 93
- ✓ CD-Bonn
- ✓ Argonne V18
- ✓ ChPT

with high precision,  $\chi^2 \sim 1$ 





kvi - center for advanced radiation technology

Δ

## Where could we see 3NF effects ?





kvi - center for advanced radiation technology

### Where could we see 3NF effects ?



S.C. Pieper et al. PRC 64, 14001 (2001)





$$n + d \longrightarrow n + d$$
  
&  
$$n + d \longrightarrow n + n + p$$

W.P. Abfalterer et al., PRL 81, 57 (1998)



W.P. Abfalterer et al., PRL 81, 57 (1998)



W.P. Abfalterer et al., PRL 81, 57 (1998)



 kvi - center for advanced radiation technology

# Three Nucleon Force (3NF)

# 1957 Fujita and Miyazawa 3NF theory



6

Prog. Theor. Phys. 17, 360 (1957)



 $\Delta$ -isobar excitations in the intermediate





 kvi - center for advanced radiation technology

# Three Nucleon Force (3NF)

# 1957 Fujita and Miyazawa 3NF theory



Prog. Theor. Phys. 17, 360 (1957)



 $\Delta$ -isobar excitations in the intermediate



# **3N Force models**

- ✓ Tucson-Melbourne (TM)
- ✓ Urbana IX
- ✓ Brazil
- ✓ ChPT



# pd breakup reaction



✓ Rich phase space



# pd breakup reaction

#### 50-250 MeV/A (without KVI-CART measurements)



✓ Rich phase space



7



#### **BINA** (Big Instrument for Nuclear-polarization Analysis)







# pd breakup reaction at KVI-CART

Intermediate energy: 100 - 200 MeV



10

# pd breakup cross section





# pd breakup cross section









university of groningen

#### kvi - center for advanced radiation technology





#### 12

# Dalitz analysis of observed cross section

$$m_{pp}^2 = (p_1 + p_2)^2$$
  
 $m_{pn}^2 = (p_1 + n)^2$ 



 kvi - center for advanced radiation technology

12

# Dalitz analysis of observed cross section

$$m_{pp}^2 = (p_1 + p_2)^2$$
  
 $m_{pn}^2 = (p_1 + n)^2$ 



kvi - center for advanced radiation technology

Dalitz analysis of observed cross section

university of

groningen

$$m_{pp}^2 = (p_1 + p_2)^2$$
  
 $m_{pn}^2 = (p_1 + n)^2$ 



12

kvi - center for advanced radiation technology

Dalitz analysis of observed cross section

university of

groningen

$$m_{pp}^2 = (p_1 + p_2)^2$$
  
 $m_{pn}^2 = (p_1 + n)^2$ 





12



# pd breakup Analyzing powers





university of groningen

#### kvi - center for advanced radiation technology

4

146<u>-</u> 21 44 64 55 100 120 144 20 46 56 150 120 144 S [MeV]

ANC\_\_\_\_\_\_ 20 40 60 50 100 120 140 20 48 60 50 100 120 140 20 48 60 100 120 140 S [MeV]



ия<u>):</u> 28 40 60 50 100 120 141 28 40 60 50 100 120 140 20 40 60 50 100 120 140 \$[MAT]

28 μ<sup>-1</sup> 29 μ<sup>-1</sup> θ<sup>-1</sup> δ<sup>-1</sup> 120 140 29 μ<sup>-1</sup> θ<sup>-1</sup> θ<sup>-1</sup> 50 200 200 140 29 μ<sup>-1</sup> θ<sup>-1</sup> δ<sup>-1</sup> δ<sup>-1</sup> 140 120 140 200 120 140 20 S [MeV]

 Einer
 <th





















2NF is sufficient and 3NF is small

 Deviation extend on both side:

The calculations overestimate or underestimate the data







✓ Some data points around 0:

2NF is sufficient and 3NF is small

 Some data off frome diagonal:

Adding 3NF makes the agreement even worse







Some data points around 0:

2NF is sufficient and 3NF is small

 Some data off frome diagonal:

Adding 3NF makes the agreement even worse



# pd breakup reaction at 50-250 MeV/A

| Observable                    |                                                              | 100   |   | 200 |   | 300 |
|-------------------------------|--------------------------------------------------------------|-------|---|-----|---|-----|
| $rac{d\sigma}{d\Omega}$      |                                                              | • • - |   | •   | • |     |
| Ŕ                             | $\begin{array}{c}A_{y}^{p}\\A_{x}^{p}\\A_{z}^{p}\end{array}$ | •     | • | •   | • |     |
| $\vec{d}$                     | $A_y^d$<br>$A_{yy}$<br>$A_{xx}$<br>$A_{xz}$                  |       | • |     |   |     |
| $\vec{a} \rightarrow \vec{p}$ | $K_{yy}^{ y'}$                                               |       | • |     |   |     |
| $\vec{p}\vec{d}$              | $C_{ij}$                                                     |       | • |     |   |     |



 kvi - center for advanced radiation technology

#### 17

# pd breakup reaction at 50-250 MeV/A





# pd breakup reaction at 50-250 MeV/A



#### **KVI-CART**:

- Rich data set of pd breakup at intermediate energies
- The first precise data set of pd breakup

 $A_x$  AND  $A_y$  for  $4\pi$  phase space



H. Tavakoli-Zaniani<sup>1,2</sup>, M. T. Bayat<sup>1</sup>, M. Eslami-Kalantari<sup>2</sup>, N. Kalantar-Nayestanaki<sup>1</sup>,
St. Kistryn<sup>3</sup>, A. Kozela<sup>4</sup>, J. G. Messchendorp<sup>1</sup>, M. Mohammadi-Dadkan<sup>1,5</sup>,
R. Ramazani-Sharifabadi<sup>1,6</sup>, E. Stephan<sup>7</sup>

<sup>1</sup>KVI-Cart, University of Groningen, Groningen, The Netherlands
<sup>2</sup>Department of Physics, School of Science, Yazd University, Yazd, Iran
<sup>3</sup>Institute of Physics, Jagiellonian University, Krakow, Poland
<sup>4</sup>Institute of Nuclear Physics, PAN, Krakow, Poland
<sup>5</sup>Department of Physics, University of Sistan and Baluchestan, Zahedan, Iran
<sup>6</sup>Department of Physics, University of Tehran, Tehran, Iran
<sup>7</sup>Institute of Physics, University of Silesia, Chorzow, Poland

# Thanks