

SEARCH FOR DARK MATTER IN MONO-H(BB) FINAL STATES IN ATLAS

2nd November 2018 **NNV** annual meeting Lunteren

Veronica Fabiani

ATLAS EXPERIMENT

Radboud Universiteit

DARK MATTER SEARCHES

Search for DM in mono-Hbb final states in ATLAS

DARK MATTER SEARCHES

Search for DM in mono-Hbb final states in ATLAS

Mono-X search as a probe for DM signals:

- DM particles do not interact with the detector
- large amount of missing transverse momentum (**MET**)
- need an object **X** to trigger the event

Mono-X search as a probe for DM signals:

- DM particles do not interact with the detector
- large amount of missing transverse momentum (MET)
- need an object **X** to trigger the event

mono-y, mono-jet, mono-V

Mono-X search as a probe for DM signals:

- DM particles do not interact with the detector
- large amount of missing transverse momentum (MET)
- need an object **X** to trigger the event

Search for DM in mono-Hbb final states in ATLAS

Mono-X search as a probe for DM signals:

- DM particles do not interact with the detector
- need an object **X** to trigger the event

THE MONO-HBB CHANNEL

Z'-2HDM used as benchmark signal model.

Search for DM in mono-Hbb final states in ATLAS

Look for a bump in the mbb distribution

THE MONO-HBB CHANNEL

Z'-2HDM used as benchmark signal model.

RESOLVED: MET≤500GEV

b-tagging on central small-R calo jets

Search for DM in mono-Hbb final states in ATLAS

Look for a bump in the m_{bb} distribution

Distinction between resolved and merged region in order to maximize the sensitivity:

THE MONO-HBB CHANNEL

Z'-2HDM used as benchmark signal model.

RESOLVED: MET≤500GEV

Look for a bump in the mbb distribution

Distinction between resolved and merged region in order to maximize the sensitivity:

MERGED: MET>500GEV

THE MONO-HBB ANALYSIS

Events are divided in different categories depending on: o amount of MET **O** # leptons (0L,1L,2L) **O** # b-tags (0b,1b,2b)

THE MONO-HBB ANALYSIS

all SRs and CRs:

• 0-lepton SR: m_{ii}/m_J as final discriminant

o 1-lepton CR: muon charge as final discriminant

Search for DM in mono-Hbb final states in ATLAS

Latest result (BOOST July 2018 CONF note): **Markov Run2 2015+2016+2017** data: <u>ATLAS-</u> CONF-2018-039

Previous results:

- **☑** Run1: <u>arXiv:1510.06218</u>
- **Markov** Run2 2015 data: <u>arXiv:1609.04572</u>
- **Markov Run2 2015+2016 data:** <u>arXiv:1707.01302</u>

Latest result (BOOST July 2018 CONF note): **Markov Run2 2015+2016+2017** data: <u>ATLAS-</u> CONF-2018-039

1) b-tagging on Variable-Radius (VR) instead of Fixed-Radius (FR) track jets

Previous results:

- **Markov** Run1: <u>arXiv:1510.06218</u>
- **Markov Run2 2015 data:** <u>arXiv:1609.04572</u>
- **Markov Run2 2015+2016 data:** <u>arXiv:1707.01302</u>

Latest result (BOOST July 2018 CONF note): **Markov Run2 2015+2016+2017** data: <u>ATLAS-</u> CONF-2018-039

Search for DM in mono-Hbb final states in ATLAS

Previous results:

- **Markov** Run1: <u>arXiv:1510.06218</u>
- **Markov Run2 2015 data:** <u>arXiv:1609.04572</u>
- **Markov Run2 2015+2016 data:** <u>arXiv:1707.01302</u>

Latest result (BOOST July 2018 CONF note): **Markov Run2 2015+2016+2017** data: <u>ATLAS-</u> **CONF-2018-039**

Search for DM in mono-Hbb final states in ATLAS

Previous results: **Markov** Run1: <u>arXiv:1510.06218</u>

- **Markov** Run2 2015 data: <u>arXiv:1609.04572</u>
- Markov Run2 2015+2016 data: <u>arXiv:1707.01302</u>

FROM FIXED TO VARIABLE-R TRACK JETS

At very high p_T , the two track jets tend to merge. This leads to a worse background rejection for fixed radius track jets.

Solution: adjust the radius on varying of the track jet p_T .

Improved subjet recover ability (hence enhanced signal acceptance) with VR track jets above 2 TeV.

The MET significance S can help in distinguishing events with fake and real MET. A new improved **object-based** definition takes into account the expected resolutions σ_y and directional correlations of each object entering in the MET reconstruction:

correlation factor of **Iongitudinal and transverse** measurement

The MET significance S can help in distinguishing events with fake and real MET. A new improved **object-based** definition takes into account the expected resolutions σ_y and directional correlations of each object entering in the MET reconstruction:

correlation factor of **Iongitudinal and transverse** measurement

The MET significance S can help in distinguishing events with fake and real MET. A new improved **object-based** definition takes into account the expected resolutions σ_y and directional correlations of each object entering in the MET reconstruction: $|\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}'}|$ correlation factor of **Iongitudinal and transverse** measurement total longitudinal variance σ_{1} .0 units - Data **LAS** Internal Z+jets W+jets = 13 TeV, 36.2 f<mark>o⁻</mark> **Etticiency** Single top Diboson SR Resolved 2b 0.8 Dijet MC VH(bb) -10² **ATLAS** (400, 300)---- (600,300) Entries Simulation Preliminary 10^{3} **Multijet Background** 800.300) 0.6 √s = 13 TeV 2 b-tag, Resolved SR → Object-based E^{miss} Significance 0.4 10-1 Data/MC 0.2 0.5 20 30 35 10 25 40 15 Signal Efficiency (ε_{s}) Object based E_{τ}^{miss} Significance (no PU jets, no soft term) ATLAS-CONF-2018-039

Search for DM in mono-Hbb final states in ATLAS

Search for DM in mono-Hbb final states in ATLAS

Search for DM in mono-Hbb final states in ATLAS

Search for DM in mono-Hbb final states in ATLAS

Z'-2HDM signal model used as a benchmark

Z'-2HDM signal model used as a benchmark

Z'-2HDM signal model used as a benchmark

Z'-2HDM signal model used as a benchmark

Is it the luminosity or the VR track jets?

Z'-2HDM signal model used as a benchmark

Search for DM in mono-Hbb final states in ATLAS

Improvement up to 200% only due to the usage of VR track jets!

Z'-2HDM signal model used as a benchmark

Improvement up to 200% only due to the usage of VR track jets!

SYSTEMATICS BREAKDOWN

Impact of systematic uncertainties for different Z'-2HDM models (different masses hence different MET regimes).

Source of unce

b-tagging V+ jets modelin Top modeling MC statistics SM $Vh(b\bar{b})$ Diboson model Signal modelin Luminosity Small-*R* jets Large-*R* jets $E_{\rm T}^{\rm miss}$ Leptons Total syst. unco Statistical unce Total uncertain

• b-tagging and V+jets/Top modelling are the dominant sources of systematic uncertainty O the analysis is statistically limited at medium-high MET

Search for DM in mono-Hbb final states in ATLAS

(a) (b) (c))
4.0 8.0 10	
ng 3.5 6.0 5.0)
3.7 4.8 4.5	5
1.8 5.4 4.9)
0.8 3.2 2.1	
ling 0.8 1.5 1.1	
ng 3.0 2.5 1.5)
2.0 2.5 2.5	5
1.4 3.0 2.0)
0.2 1.0 2.0)
1.2 1.7 1.1	
0.2 0.8 0.7	1
ert. 6.5 13 13	
ert. 2.3 20 22	
nty 7 24 25	

FUTURE PLANS

Many ideas already being discussed in view of full Run-2 analysis:

• dedicate studies to decrease the dominant systematic uncertainties • V+jets/Top modeling, b-tagging...

• MET significance *in place of* standard anti-qcd cuts

O re-interpretations include other signal models (also at low MET) ○ <u>RECAST</u>

Full Run-2 analysis has already started...

Search for DM in mono-Hbb final states in ATLAS

Thank you for the attention!

BACKUP SLIDES

Merged					
ger					
or selection (CRs)					
$hiss > 150 \mathrm{GeV}$					
^s , jets) > 20°					
$p_{\rm T}^{\rm miss}) < 90^{\circ}$					
0ℓ SR: $E_{\rm T}^{\rm miss}$ > 500 GeV					
1μ -CR: $E_{\rm T}^{\rm miss, no\mu} > 500{\rm GeV}$					
2ℓ -CR: $p_{\rm T}^{\ell\ell} > 500 {\rm GeV}$					
N(central large- <i>R</i> jets) ≥ 1					
au-veto					
additional <i>b</i> -jet veto					
H_T ratio					
$\frac{\Delta R(\mathrm{VR}_1,\mathrm{VR}_2)}{R_{\min}} > 1$					
irement on					
track-jets					

Resolved
lepton
(mo
m
Δ
S >16 (SR on
$\begin{array}{c c} 0\ell \ {\rm SR}: E_{\rm T}^{\rm miss} < 500{\rm G} \\ 1\mu \mbox{-} {\rm CR}: E_{\rm T}^{\rm miss, \ {\rm no}\mu} < \\ 2\ell \mbox{-} {\rm CR}: p_{\rm T}^{\ell\ell} < 500{\rm G} \end{array}$
N(central small- <i>R</i> j
$p_{\rm T}^{\rm jet_1} > 45 \parallel p_{\rm T}^{\rm jet_2}$
$\sum_{i=1}^{2(3)} p_{\mathrm{T}}^{\mathrm{jet}_i} > 120 \ (15)$
$\Delta \phi(\text{jet}_1, \text{jet}_2) <$
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}},h) >$
$\Delta R(\text{jet}_1, \text{jet}_2) <$
small- <i>R</i> jets

Search for DM in mono-Hbb final states in ATLAS

Search for DM in mono-Hbb final states in ATLAS

Search for DM in mono-Hbb final states in ATLAS

Search for DM in mono-Hbb final states in ATLAS

RESULTS @36fb-1

The results are interpreted as exclusion limits on **Z'-2HDM** models...

Fit one MET region at the time for SR, to minimise the dependance on a specific h+DM signal.

...and also as **less model-dependent** limits on:

OLD SYSTS BREAKDOWN TABLE @36

• MC statistics dominant systematic uncertainty at high MET

Significant impact also from b-tagging and V+jets modeling

Source of uncert

V+jets modeling $t\bar{t}$, single-t mode SM $Vh(b\bar{b})$ norn Signal modeling MC statistics Luminosity b-tagging, trackb-tagging, calo j Jets with R = 0.4Jets with R = 1.0Total syst. uncer Statistical uncert

Total uncert.

		d on an annual an the				
Impact [%]						
ι.	(a)	(b)	(c)			
g	5.0	5.7	8.2			
eling	3.2	3.0	3.9			
n.	2.2	6.9	6.9			
5	3.9	2.9	2.1			
	4.9	11	22			
	3.2	4.5	5.4			
-jets	1.4	11	17			
ets	5.0	3.4	4.7			
4	1.7	3.8	2.1			
0	< 0.1	1.2	4.7			
rt.	10	21	36			
t.	6	38	62			
	12	43	71			

statistically limited at medium-high MET

VR VS FR TRACK JETS

VR(2b) vs FR(1b+2b)

1b+2b ЦЦ 2b ΥR Ratio Significance

Still significant improvement at high m_{Z'}, using only 2btag region. **Drop 1-btag region!**

MET SIGNIFICANCE VS ALL

Search for DM in mono-Hbb final states in ATLAS

