Lepton (non)-universality in W decays in ATLAS

Daniil Ponomarenko

Supervisor: Nicolo de Groot

02-Nov-2018 NNV Annual meeting

Motivation

W Leptonic Branching Ratios

- LEP results shows an excess of the branching ratio $W \rightarrow \tau v$ with respect to the other leptons
 - Branching ration have been measured at LEP in the WW final state.
 - More then 2 sigma discrepancy.
 - The branching fractions of W into electrons and into muons perfectly agree.
 - Indicator for BSM physics.

Motivation

- The goal is to measure the W branching ratio in pp and search for lepton non-universality in ATLAS
 - We have very large statistics for W decay at ATLAS
 - Excellent possibility to test SM and lepton universality
 - The aim of the measurement is to achieve $\mathcal{O}(1.5\%)$ error

Overview and current status

• Final states analysed: $W \rightarrow \tau_{lep} \nu \rightarrow \ell \nu \nu$ and $W \rightarrow \ell \nu$

- Major signal features:
 - Displacement of the τ decay helps to distinguish leptons from τ decays from prompt leptons.
 - Recoil energy and/or jets to get events with boosted W bosons.
- Major backgrounds: QCD fakes, $Z \rightarrow \tau \tau$

Analysis strategies

- Object identification/object quality cuts + Boosted Decision Trees (BDT) classifiers
- \circ 2D fit on d_0 and BDT output
- Data-driven background estimation
 - Fake Factor method for MJ background

• Current status

- Machinery is almost in place.
- Analysing 2015 year using R21.
- Kicked off the full-Run2 analysis

Vertexing

• Impact parameter d₀:

- Tau lepton has lifetime that causes difference in do shape
 - Mean life 2.906(10)×10⁻¹³ s
- Independent from kinematic quantities
- \circ Can play with recoil energy to get more boosted $W \rightarrow \tau_{lep} \nu$ decays

Gaining signal with TMVA

- Simple BDT model works pretty well
 - 11 variables. Most valuable:
 - p_T^{lep} , $d\phi(\ell E_T^{miss})$, d_0 , E_T^{miss} , M_T
 - d_0 is not correlated with BDT will use it as control variable
 - AŬC: 0.794
 - With BDT cut we have up to 6.285% $W \rightarrow \tau_{lep} \nu$ decay fraction and still have enough statistics to play with additional cuts.

Signal region

- o d₀ has no correlation with other BDT input variables:
 - Use do as control variable
- Two dimensional fit performed via 1D hack:
 - Split BDT distribution to the 5 bins.
 - Certainly sufficient approach for any histogrambased model with no 2D continuous function in the fit.

Control regions

• Fake region

- To get QCD background scale factor
- Template fit method:
 - $\circ~$ Relaxed cuts om Et^{MISS} and Pt
 - Inverted lepton Isolation and lepton quality cuts

• Z channel

- To get EW MC background scale factor
- $Z \rightarrow ll$ selection:
 - Exactly 2 leptons with opposite charge
 - Mass region 81<|MzII|<101 [GeV]

$d_{\rm 0}$ bias for 2015 and 2016

We have shift for impact parameter dofor the both years

- Caused be IBL alignment problem
- Breaks blinded fit

• Solution:

- One more region with d0 distribution in $Z \rightarrow ll$
- introduce nuisance parameter *TRK_dO_bias* in the fit, which is common for all do distributions.
 - $\circ~$ Up and down variations as ± 1 bin shift from the nominal histogram.

Fit results: Asimov Data

Nuisance parameter	Value	Uncertainty	POI	Error
TRK_d0_bias	-1.4285e-09	7.33e-03	MCSTAT	3.73e-03
norm_W	1.	4.35e-04	NORM	1.83e-02
norm_Z	1.	5.41e-04	STAT	8.82e-03
norm_QCD	1.	5.43e-03	SYST	1.43e-05
			Total	2.07e-02

• Fit uncertainty breakdown:

- SYST includes d0 bias only
- STAT is the remaining error after all nuisance parameters are held constant
- QCD background is under good control (0.5%)

• POI has 2% uncertainty

• For 2015 year only. Could be less then 1.2% for all Run-II statistics.

Conclusions

• A lot of things to be done. But...

...most of the analysis software is ready

- Package for QCD background estimation
- TMVA helps to distinguish $W \rightarrow \tau_{lep} v$ from the background processes
- 2D fit

• First fit results:

- Promising statistical power to perform this analysis
 - Fakes are under good control
 - Signal uncertainty is about 2%.
 - Naive estimation for full Run-II statistic: less then 1.2%

• Plans and timeline:

- December 2018:
 - Closer look at the Data 2017 and include systematics
- March 2019:
 - Combine all Run-II data

Backup

Measuring $W \to \tau \to \ell / W \to \ell$

Daniil Ponomarenko, Nicolo de Groot

Links related to $W \rightarrow \tau \rightarrow \ell / W \rightarrow \ell$ analysis

• JIRA:

<u>https://its.cern.ch/jira/browse/ATLASSMWBR-1</u>

• GIT:

- <u>https://gitlab.cern.ch/Wlep_BR</u>
- TWiki:
 - <u>https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/Vtaus13TeV</u>

jet $\rightarrow \tau$ fakes background estimation

- Fakes background is one of the dominant backgrounds
- Need a reliable estimation method with acceptable uncertainties
- Fake Factor (FF) method
 - Basically a transfer factor method

Validation in same-sign $\ell \tau$ regions

• **1.** Obtain FF = pass/fail ratio in Fakes-enriched Region

• 2. Apply FF in Signal Region

ToDo list

Implement recoil energy

• Current approach is focused on 0 and 1 jet events selection

- Have a look at muon channel
 - Now output contains only electrons
- \circ Correct MC d_0 distribution in 2015/2016
 - Data/MC is shifted known IBL alignment problem
 - For both muons and electrons
- Tune MJ background estimation
 - Do slicing on *ptcone*
 - Have a look what ML can do for us.
- Improve TMVA separation power
 - Tune BDT model
 - Try out other classification algorithms
- Include CP systematics
- Investigate fit stability with a toy models

