

kvi - center for advanced radiation technology

Analysis of the elastic and three-body break-up channel in deuteron-deuteron scattering at 65 MeV/nucleon

Reza Ramazani Sharifabadi

N-N interaction is described by exchange of mesons.

 High-precision NN models were developed based on Yukawa's theory:

CD-Bonn 2000 Argonne *V*18 (AV18) Nijmegen I, II

 kvi - center for advanced radiation technology

university of groningen

 kvi - center for advanced radiation technology

 Ab-initio calculations of binding energies using NN and 3N potentials as input

- Two-nucleon force gives discrepancies for A>2.
- Additional three-nucleon effects, (3NF) generally gives a better agreement with experiment.

11/1/2018

kvi - center for advanced radiation technology

Two-nucleon force shows discrepancies.

 Additional 3NF generally gives a better agreement with experiment in cross section but for the spin observables has different trends.

11/1/2018

Two-nucleon force shows discrepancies.

Additional 3NF generally gives a better agreement with experiment in cross section but for the spin observables has different trends.

11/1/2018

 $(28^{\circ}, 28^{\circ}, 20^{\circ})$ **(**θ1, θ2, φ12)= 0.40.20.0-0.2.90 Mer -0.4- **NN** NN + 3N60 80 100 120 140 160 180 S [MeV]

university of

groningen

kvi - center for advanced radiation technology

university of groningen

kvi - center for advanced radiation technology

11/1/2018

university of groningen

kvi - center for advanced radiation technology

SNF effects are significantly enhanced in magnitude in 4body system,

Expanding the experimental database in fourbody system.

Nd break–up											
		100	200	200							
$\frac{d\sigma}{d\Omega}$		•	•								
p A _y A _z	•			:							
$d A_y(d)$	Ċ	•	· · ·	:							
Ayy	Ċ	•									
A_{XX} A_{YZ}											
$\vec{p} \rightarrow \vec{p}$			· · ·	:							
K _i ^{j'}											
đ→p											
K ^{y'}		•	· · · · · · · · · · · · · · · · · · ·	:							
$\vec{n} \perp \vec{d}$			· · ·	:							
$\begin{bmatrix} P + u \\ C_{ij} \end{bmatrix}$		•	· · · · · · · · · · · · · · · · · · ·								

university of groningen

 kvi - center for advanced radiation technology

SNF effects are significantly enhanced in magnitude in 4body system,

Expanding the experimental database in fourbody system.

11/1/2018

dd elastic	scatterii	ng			dd break-	–up			
	10	0	200				100	2	00
dσ dΩ				•	$\frac{d\sigma}{d\Omega}$				
iT ₁₁	•			•	ā _{iT11}				
T ₂₂				•	T ₂₂		:		· · · · · · · · · · · · · · · · · · ·
T ₂₀				•	T ₂₀				
T ₂₁					T ₂₁				
K _i ^{j'}					K _i ^{j'}				· · · · · · · · · · · · · · · · · · ·
K _y ^y '					K ^{y'} _{vv}				
K _{ij} ^y					55				
*C _{ij}					C _{ij}				

Outline of data analysis

 kvi - center for advanced radiation technology

d-d scattering channels:

 $\overrightarrow{d} + d \rightarrow d + d,$ d-d elastic channel $\overrightarrow{d} + d \rightarrow d + p + n,$ Three-body break-up channel $\overrightarrow{d} + d \rightarrow {}^{3}H + p,$ neutron transfer channel $\overrightarrow{d} + d \rightarrow {}^{3}He + n,$ proton transfer channel

 $\overrightarrow{d} + d \rightarrow p + p + n + n$, four-body break-up

Experimental Setup

kvi - center for advanced radiation technology

BINA (Big Instrument for Nuclear-Polarization Analysis)

- Forward Wall:
 - MWPC (Multi-Wire Proportional Chamber),
 - \checkmark Δ E-E detectors
- Backward Ball:
 - ✓ 149 Phoswich Scintillators,
 - As detector and scattering chamber

Experimental Setup

university of groningen

kvi - center for advanced radiation technology

BINA (Big Instrument for Nuclear-Polarization Analysis)

- Forward Wall:
 - MWPC (Multi-Wire Proportional Chamber),
 - \checkmark Δ E-E detectors
- Backward Ball:
 - ✓ 149 Phoswich Scintillators,
 - As detector and scattering chamber

Analysis of elastic channel

 kvi - center for advanced radiation technology

Cross section for d-d elastic channel:

> Select d-d events:

Analysis of elastic channel

university of

groningen

Cross section for d-d elastic channel:

> Project on the energy axis

Use a polynomial +Gaussian fit

Background subtraction

kvi - center for advanced

radiation technology

Analysis of elastic channel

 kvi - center for advanced radiation technology

Analyzing powers for d-d elastic channel:

$$\sigma(\theta,\phi) = \sigma_0(\theta) \left[1 + \frac{3}{2} p_z A_y(\theta) \cos(\phi) - \frac{1}{4} p_{zz} A_{zz}(\theta) + \frac{1}{4} p_{zz} (A_{zz}(\theta) + 2A_{yy}(\theta)) \cos(2\phi)\right],$$

 $p_{ZZ} = 0 \&\& p_Z \neq 0$

 $p_Z = 0$ && $p_{ZZ} \neq 0$

Cross section and analyzing powers of elastic channel

Results agree very well with independent data taken with a magnetic spectrometer (BBS).

Lack of ab-initio calculations for elastic d+d process at these

energies.

university of

groningen

kvi - center for advanced

radiation technology

university of groningen

kvi - center for advanced radiation technology

Kinematics of three-body

breakup channel:

 kvi - center for advanced radiation technology

Particle identification (PID) by using time-of-flight (TOF) information.

A. Ramazani-Moghaddam-Arani, Ph.D. thesis, University of Groningen, (2009).

university of groningen /

kvi - center for advanced radiation technology

Three-body breakup:

 kvi - center for advanced radiation technology

sity of kvi - center for advanced radiation technology

Summary and outlook

kvi - center for advanced radiation technology

□ Precision cross section and polarization data in d+d scattering

>Elastic d-d scattering:

- Perfect agreement with other measurements
- Lack of ab-initio calculations to conclude

Three-body break-up in d-d scattering:

- Excellent particle identification of protons and deuterons
- Rich data set of cross sections and analysing powers (5) for 192 configurations.
- Test of the validity of models describing the quasi-free Nd domain.

Analysis of three-body break-up with neutron detection to study isospin degrees-offreedom.

Collaboration

kvi - center for advanced radiation technology

Collaboration

R. Ramazani-Sharifabadi, M.T. Bayat, N. Kalantar-Nayestanaki,
St. Kistryn, A. Kozela, M. Mahjour-Shafiei, J. G. Messchendorp,
M . Mohammadi-Dadkan, A. Ramazani-Moghaddam-Arani,
E. Stephan, and H. Tavakoli-Zaniani

Thank you for your attention

 kvi - center for advanced radiation technology

11/1/2018

Outline of Data Analysis

 kvi - center for advanced radiation technology

Cross section of any reaction with polarized beam:

>For practical purposes, the analysing powers are

also written in the spherical coordinate system:

university of groningen

kvi - center for advanced radiation technology

SNF effects is considered as a additional term in the potential,

➤ Based on two-pion exchange when the third particle is in the ∆ isobar excitation.

Some of the common 3NFs

Tucson-Melbourn (TM) Urbana IX Brazil

Collaboration

Our collaboration

R. Ramazani-Sharifabadi^{1,2}, M.T. Bayat¹, N. Kalantar-Nayestanaki¹, St. Kistryn³, A. Kozela⁴, M. Mahjour-Shafiei²,

J. G. Messchendorp¹, M. Mohammadi-Dadkan^{1,5}, A. Ramazani-Moghaddam-Arani⁶, E. Stephan⁷, and H. Tavakoli-Zaniani^{1,8}

¹KVI-CART, University of Groningen, Groningen, The Netherlands,

²Department of Physics, University of Tehran, Tehran, Iran,

³Institute of Physics, Jagiellonian University, Krakow, Poland,

⁴Institute of Nuclear Physics, PAN, Krakow, Poland,

⁵Department of Physics, University of Sistan and Baluchestan, Zahedan, Iran,

⁶Department of Physics, University of Kashan, Kashan, Iran,

⁷Institute of Physics, University of Silesia, Chorzow, Poland,

⁸Department of Physics, School of Science, University of Yazd, Yazd, Iran

 kvi - center for advanced radiation technology

- > Why d-d scattering?
- ► Experimental setup
- ➤Analysis approach
- ➢Results
- Summary and outlook

Outline of data analysis

 kvi - center for advanced radiation technology

Polarized deuteron beam and spin-1 particle polarization:

> Vector polarization:

$$p_Z = \frac{N_+ - N_-}{N_+ + N_- + N_0},$$

> Tensor polarization: $p_{ZZ} = \frac{N_+ + N_- - 2N_0}{N_+ + N_- + N_0},$

Outline of data analysis

 kvi - center for advanced radiation technology

Cross section of any reaction with polarized beam:

$$\sigma(\xi) = \sigma_0(\xi) \left(1 + \frac{3}{2} [p_x A_x(\xi) + p_y A_y(\xi) + p_z A_z(\xi)] + \frac{2}{3} [p_{xy} A_{xy}(\xi) + p_{yz} A_{yz}(\xi) + p_{xz} A_{xz}(\xi)] + \frac{1}{3} [p_{xx} A_{xx}(\xi) + p_{yy} A_{yy}(\xi) + p_{zz} A_{zz}(\xi)] \right),$$

$$\sigma(\theta,\phi) = \sigma_0(\theta) \left[1 + \frac{3}{2} p_z A_y(\theta) \cos(\phi) - \frac{1}{4} p_{zz} A_{zz}(\theta) + \frac{1}{4} p_{zz} (A_{zz}(\theta) + 2A_{yy}(\theta)) \cos(2\phi)\right]$$