Search for long-lived particles decaying to displaced jets

NNV Annual Meeting 2nd of November 2018 Igor Kostiuk

Long-lived particle. What is it?

Why long-lived?

- heavy messenger
- phase space (small mass splitting)

Same principles apply to BSM particles!

LLPs are motivated in many BSM models

SUSY models

3

- Production through new particles
 charged under SM gauge interaction
- New particles are typically heavy because of constraints

Dark sector models

- Separated dark matter sector with portals to SM
- New particles must be SM singlet
- Could be any mass
- Could have own hidden sector confinement

NNV Annual Meeting

Hidden Valley models

 new v-particles are charged under the new gauge group but not under SM

- lightest particle with nonzero v-charge cannot decay into SM particles → DM candidate
- lightest uncharged particle (π_v) can decay back to light SM particles by tunnelling back through portals → typically long-lived

Portals to the Dark Sector

Higgs portal

Hidden valley

Vector portal

- Dark photon
- Hidden valley
- Z' models

Neutrino portal

• Right handed neutrino

LLP Signatures

- All kinds of unusual signatures are possible
- Model-independent approach may be preferable
- Multiple search strategies can be applied to one signature

jet reconstruction:

- efficiency > 80% (with $p_T > 15 \text{ GeV}$)
- energy resolution $\sim 10\%$ (with $p_T > 10 \text{ GeV}$)
- b(c) tagging efficiency ~65%(25%)

Past and present

- Jet is a collimated bundle of hadrons
- Previous analysis focused on displaced jets and set some limits
- This analysis jets emerge in the detector → dark sector particle decays into dark parton showers: the lightest dark particles can then decay to SM ones
- Very distinctive signature: many displaced tracks and different vertices in the jet cone needs dedicated trigger selection

02.11.2018

Simulation samples

- Simulation samples (2016 conditions):
 - Produced 11, 20, 25, 35 GeV/c² for 1, 5, 10 ps
 - For all the cases, the π_v decays into two b-jets ($\pi_v \rightarrow b\bar{b}$)
- Emerging jet signature (Z'(200) $\rightarrow q_v \bar{q}_v \rightarrow$ multiple π_v)
- High multiplicity of π_v in the final state (between 5 and 6 per event)

Trigger selections

- $ightarrow p_{T}$ -weighted distance of closest approach to the beamline
- Number of displaced long tracks
- Secondary vertex (SV) tag
- Other variables were considered too, i.e.:
 - fraction of p_T of prompt long tracks
 - p_{T} -weighted IP and χ^{2}_{IP} distributions
 - redefining the "displaced" condition that we are using

Distributions of the main variables

Trigger selection efficiencies

Dark showers $Z' \rightarrow q_v q_v$	1 ps	5 ps	10 ps
35 GeV/c^2	8.50 ± 0.51 %	8.11 ± 0.50 %	7.65 ± 0.49 %
25 GeV/c ²	11.39 ± 0.59 %	10.99 ± 0.58 %	10.13 ± 0.56 %
20 GeV/c ²	11.85 ± 0.59 %	12.29 ± 0.60 %	10.98 ± 0.58 %
11 GeV/c ²	15.40 ± 0.67 %	16.93 ± 0.69 %	14.83 ± 0.65 %

- The amount of data is too big to process efficiently
- Developing a data filtering selection
- Need to retain about 0.5% of current sample
- Filter over the whole Run2 data
- Include code for finding subvertices in individual jets
- Expand the search to include lower masses of π_v

Conclusions

- Trigger selection was implemented for the emerging jets signature (the Run2 pp data taking was finished on the 24th of October)
- Data filtering selection is being developed taking into account jet daughter vertices (for the full Run2 data sample)
 - Hopefully new LLP next year!

Thank you for attention!

02.11.2018