NNV Annual Meeting - 2 November 2018 - Lunteren

Probing New Physics with Rare Leptonic *B*-meson Decays

Ruben Jaarsma (Nikhef)

Beyond the Standard Model

- The Standard Model is very successful, but not complete:
 - Dark matter

**

- Baryon asymmetry
- Hierarchy problem

- Many theories about New Physics
- * Experimental searches at High-energy and High-precision

B-physics experiments

B-meson decays offer a rich field of high-precision SM tests.

Main experimental players:

Rare *B*-meson decays

Decays mediated by $b \rightarrow q\ell^+\ell^-$ transition

* Semileptonic transitions, e.g.

See plenary talk by M. Merk

* Leptonic transitions:

 $q \in \{d, s\}$

→ This talk

Rare Leptonic B-Decays

- * Decays of type $B_{s,d}^0 \to \ell^+ \ell^-$
- * In SM helicity suppressed: branching ratio $\mathscr{B} \propto m_{\ell}^2$
- * Theoretically clean, all hadronic physics described by single non-perturbative parameter: $f_{B_{s,d}}$ (decay constant)
- Possible New Physics contributions:

Theoretical description

- * Effective Field Theory: integrate out heavy d.o.f. (SM & NP)
- * Decays described by low-energy effective Hamiltonian: $q \in \{d, s\}$ $\mathcal{H}_{eff} \propto V_{tq}^* V_{tb} \left[C_{10}^{\ell \ell} O_{10} + C_S^{\ell \ell} O_S + C_P^{\ell \ell} O_P + C_{10}^{\ell \ell'} O_{10}' + C_S^{\ell \ell'} O_S' + C_P^{\ell \ell'} O_P' \right] + \text{h.c.}$
- * Effective 4-point interactions $O_i^{(\prime)}$. In the SM only $O_{10} = \frac{1}{2} (\bar{q}\gamma_\mu (1 - \gamma_5) b) (\bar{\ell}\gamma^\mu \gamma_5 \ell)$

with real short-distance coefficient C_{10}^{SM}

* NP operators $O_{10}' = \frac{1}{2} (\bar{q}\gamma_{\mu}(1+\gamma_{5})b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$ $O_{S}^{(\prime)} = \frac{1}{2} m_{b}(\bar{q}(1\pm\gamma_{5})b)(\bar{\ell}\ell)$ $O_{P}^{(\prime)} = \frac{1}{2} m_{b}(\bar{q}(1\pm\gamma_{5})b)(\bar{\ell}\gamma_{5}\ell)$

* Wilson coefficients $C_i^{\ell\ell(\prime)}$ couplings

Amplitude

* From effective Hamiltonian to amplitude:

$$\lambda = L, R; \ \eta_{L,R} = \pm 1$$

$$A(\overline{B}_{q}^{0} \to \ell_{\lambda}^{+}\ell_{\lambda}^{-}) = \left\langle \ell_{\lambda}^{-}\ell_{\lambda}^{+} \middle| \mathcal{H}_{\text{eff}} \middle| \overline{B}_{q}^{0} \right\rangle \propto V_{tq}^{*}V_{tb} f_{B_{q}} M_{B_{q}} m_{\ell} C_{10}^{\text{SM}} \left[\eta_{\lambda}P_{\ell\ell}^{q} + S_{\ell\ell}^{q} \right]$$

decay constant helicity suppression

with

$$P_{\ell\ell}^{q} \equiv \frac{C_{10}^{\ell\ell} - C_{10}^{\ell\ell'}}{C_{10}^{SM}} + \frac{M_{B_{q}}^{2}}{2m_{\ell}} \left(\frac{m_{b}}{m_{b} + m_{q}}\right) \left[\frac{C_{P}^{\ell\ell} - C_{P}^{\ell\ell'}}{C_{10}^{SM}}\right] \stackrel{\text{SM}}{\to} 1$$

$$S_{\ell\ell}^{q} \equiv \sqrt{1 - 4\frac{m_{\ell}^{2}}{M_{B_{q}}^{2}}} \frac{M_{B_{q}}^{2}}{2m_{\ell}} \left(\frac{m_{b}}{m_{b} + m_{q}}\right) \left[\frac{C_{S}^{\ell\ell} - C_{S}^{\ell\ell'}}{C_{10}^{SM}}\right] \stackrel{\text{SM}}{\to} 0$$
Nik he

Branching ratio

- * Experimental measurements refer to time-integrated, untagged, helicity-summed rate: $\overline{\mathscr{B}}(B_q \to \ell^+ \ell^-) \equiv \frac{1}{2} \int_0^\infty \left\langle \Gamma(B_q(t) \to \ell^+ \ell^-) \right\rangle dt$
- * Theorists usually consider untagged rate at t=0: $\mathscr{B}(B_q \to \ell^+ \ell^-)_{\text{theo}} \equiv \left\langle \Gamma(B_q(t) \to \ell^+ \ell^-) \right\rangle|_{t=0}$
- * Convert using $\overline{\mathscr{B}}(B_q \to \ell^+ \ell^-) = \begin{bmatrix} \frac{1 + \mathscr{A}_{\Delta\Gamma_q}^{\ell\ell} y_q}{1 y_q^2} \end{bmatrix} \mathscr{B}(B_q \to \ell^+ \ell^-)_{\text{theo}}$ [Phys. Rev. Lett. 109 (2012) 041801] $y_d = 10^{-3}, y_s \equiv \frac{\Delta\Gamma_s}{2\Gamma_s} = 0.0645 \pm 0.0045$
- * We then obtain $\overline{\mathscr{B}}(B_q \to \ell^+ \ell^-) \propto \left[\frac{1 + \mathscr{A}_{\Delta\Gamma_q}^{\ell\ell} y_q}{1 - y_q^2} \right] |C_{10}^{\mathrm{SM}} V_{tq} V_{tb}^*|^2 f_{B_q}^2 M_{B_q} m_{\ell}^2 (|P_{\ell\ell}^q|^2 + |S_{\ell\ell}^q|^2)$

Experimental status of B_s decays

- * $\overline{\mathscr{B}}(B_s \to \mu^+ \mu^-)$ is well-established: $\overline{\mathscr{B}}(B_s \to \mu^+ \mu^-) = (3.0 \pm 0.5) \times 10^{-9}$
- Pioneering measurement of effective lifetime:

 $\rightarrow \mathscr{A}^{\mu\mu}_{\Delta\Gamma_s} = 8.24 \pm 10.72$

- * LHCb limit on $\overline{\mathscr{B}}(B_s \to \tau^+ \tau^-)$ 4 orders of magnitude from SM
- Limit on ℬ(B_s → e⁺e⁻) from 2009
 6 order of magnitude from SM
 has since been forgotten

Theoretical prediction in the SM: $\overline{\mathscr{B}}(B_s \to \mu^+ \mu^-)_{\text{SM}} = (3.57 \pm 0.16) \times 10^{-9}$

How much room for New Physics is left in the branching ratios of $B_s \rightarrow \tau^+ \tau^-$ and $B_s \rightarrow e^+ e^-$?

Constraints on short-distance coefficients

Useful to introduce:

$$\overline{R}_{\ell\ell}^{s} \equiv \frac{\overline{\mathscr{B}}(B_{s} \to \ell^{+}\ell^{-})}{\overline{\mathscr{B}}(B_{s} \to \ell^{+}\ell^{-})_{\text{SM}}} = \left[\frac{1 + \mathscr{A}_{\Delta\Gamma_{s}}^{\ell\ell}y_{s}}{1 + y_{s}}\right] (|P_{\ell\ell}^{s}|^{2} + |S_{\ell\ell}^{s}|^{2})$$

Experimental value

 $\overline{R}^{s}_{\mu\mu}\Big|_{\text{LHCb'17+CMS}} = 0.84 \pm 0.16$

yields circular constraint in $P^s_{\mu\mu} - S^s_{\mu\mu}$ plane

Universal New Physics Scenario

- * Assume short-distance coefficients are lepton-flavour universal
- * Consider $-1 \leq \mathscr{A}^{\mu\mu}_{\Delta\Gamma_s} \leq +1$
- * Evaluate effect on $B_s \to \tau^+ \tau^-$ and $B_s \to e^+ e^-$

Implications for $B_s \to \tau^+ \tau^-$

* In the Universal New Physics Scenario:

$$P_{\tau\tau}^{s} = \left(1 - \frac{m_{\mu}}{m_{\tau}}\right) \mathscr{C}_{10} + \frac{m_{\mu}}{m_{\tau}} P_{\mu\mu}^{s}$$

$$S_{\tau\tau}^{s} = \frac{m_{\mu}}{m_{\tau}} \sqrt{\frac{1 - 4\frac{m_{\tau}^{2}}{M_{B_{s}}^{2}}}{1 - 4\frac{m_{\mu}^{2}}{M_{B_{s}}^{2}}}}S_{\mu\mu}^{s}$$

NP suppressed through

$$\frac{m_{\mu}}{m_{\tau}} = 0.059$$

which yields:

$$0.8 \le \overline{R}_{\tau\tau}^s \le 1.0$$

Enhancement of $B_s \rightarrow e^+e^-$

* We now obtain the coefficients:

$$P_{ee}^{s} = \left(1 - \frac{m_{\mu}}{m_{e}}\right) \mathscr{C}_{10} + \frac{m_{\mu}}{m_{e}} P_{\mu\mu}^{s}$$

$$S_{ee}^{s} = \frac{m_{\mu}}{m_{e}} \sqrt{\frac{1 - 4\frac{m_{\tau}^{2}}{M_{B_{s}}^{2}}}{1 - 4\frac{m_{\mu}^{2}}{M_{B_{s}}^{2}}}} S_{\mu\mu}^{s}$$

* NP enhanced through

$$\frac{m_{\mu}}{m_e} = 206.77$$

which yields:

$$0 \le \overline{R}_{ee}^s \le 1.7 \times 10^5$$

Enhancement of $B_s \rightarrow e^+e^-$

* Compare to $B_s \to \mu^+ \mu^-$: $\Re^{ee}_{s,\mu\mu} \equiv \frac{\overline{\mathscr{B}}(B_s \to e^+ e^-)}{\overline{\mathscr{B}}(B_s \to \mu^+ \mu^-)}$

What other observables may reveal New Physics effects?

Observables for $B_s \to \mu^+ \mu^-$

* CP violation \rightarrow allow for a complex *P* and *S*:

$$P \equiv |P|e^{i\varphi_P}, \quad S \equiv |S|e^{i\varphi_S}$$

* $B_s^0 - \bar{B}_s^0$ mixing \rightarrow time-dependent rate asymmetry: $\frac{\Gamma(B_s^0(t) \to \mu_{\lambda}^+ \mu_{\lambda}^-) - \Gamma(\bar{B}_s^0(t) \to \mu_{\lambda}^+ \mu_{\lambda}^-)}{\Gamma(B_s^0(t) \to \mu_{\lambda}^+ \mu_{\lambda}^-) + \Gamma(\bar{B}_s^0(t) \to \mu_{\lambda}^+ \mu_{\lambda}^-)} = \frac{\mathscr{C}_{\mu\mu}^{\lambda} \cos(\Delta M_s t) + \mathscr{S}_{\mu\mu} \sin(\Delta M_s t)}{\cosh(y_s t/\tau_{B_s}) + \mathscr{A}_{\Delta\Gamma_s} \sinh(y_s t/\tau_{B_s})}$

Observables for $B_s \to \mu^+ \mu^-$

- * Observables are given by: $\mathscr{A}_{\Delta\Gamma_{s}}^{\mu\mu} = \frac{|P|^{2}\cos 2\varphi_{P} - |S|^{2}\cos 2\varphi_{S}}{|P|^{2} + |S|^{2}} \xrightarrow{\mathrm{SM}} 1$ $\mathscr{S}_{\mu\mu} = \frac{|P|^{2}\sin \varphi_{P} - |S|^{2}\sin \varphi_{S}}{|P|^{2} + |S|^{2}} \xrightarrow{\mathrm{SM}} 0$ $\mathscr{C}_{\mu\mu}^{\lambda} = -\eta_{\lambda} \left[\frac{2|PS|\cos(\varphi_{P} - \varphi_{S})}{|P|^{2} + |S|^{2}} \right] = -\eta_{\lambda} \mathscr{C}_{\mu\mu} \xrightarrow{\mathrm{SM}} 0$
- * Non-zero value of $S_{\mu\mu}$ or $C_{\mu\mu}$ unambiguous signal for New Physics!
- * Equivalent for B_d decays, but $\mathscr{A}_{\Delta\Gamma_d}^{\ell\ell}$ not accessible.

Experimental aspects

* The coefficients can be determined in certain scenarios, e.g.

- * Example with ± 0.2 uncertainty for asymmetries
- * Pin down |S| at 5 σ level!

SMEFT:
$$C_P = -C_S$$
, $C'_P = C'_S$
 $|P|e^{i\varphi_P} = \mathscr{C}_{10} - \left[\frac{1+|x|e^{i\Delta}}{1-|x|e^{i\Delta}}\right]|S|e^{i\varphi_S}$
 $x \equiv |x|e^{i\Delta} \equiv \left|\frac{C'_S}{C_S}\right|e^{i(\tilde{\varphi}'_S - \tilde{\varphi}_S)}$

G. Banelli, R. Fleischer, RJ, G. Tetlalmatzi-Xolocotzi [arXiv:1809.09051 [hep-ph]]; to appear in EPJC

- Arise at the tree level
- * As for $B_{s,d}^0 \to \ell^+ \ell^-$ decays:
 - * Hadronic physics described by f_{B} -
 - Helicity suppressed in SM
- New pseudoscalar contributions can lift the helicity suppression
- * $\mathscr{B}(B^- \to e^- \bar{\nu}_e)$ can be enhanced by up to 4 orders of magnitude with respect to the SM!

Conclusions

- * Search for new physics in *B*-meson decays: *High-precision frontier*
- * Leptonic *B*-decays have many interesting aspects.
- * $B_s \rightarrow e^+e^-$ received little attention, now it has moved back in the spotlight.
- * Studies of **CP** violation interesting for LHCb upgrade(s).
- * Exciting times ahead!

Backup slides

Implications for $B_d \rightarrow \mu^+ \mu^-$

For $B_d \to \mu^+ \mu^-$ we obtain: $0.65 \le \overline{R}^d_{\mu\mu} \le 1.11$

The challenge:

* We have 4 observables...

 $\overline{\mathscr{B}}(B_s \to \mu^+ \mu^-), \quad \mathscr{A}^{\mu\mu}_{\Delta\Gamma_s}, \quad \mathscr{S}_{\mu\mu}, \quad \mathscr{C}_{\mu\mu}$...but only 3 independent: $\left(\mathscr{A}^{\mu\mu}_{\Delta\Gamma_s}\right)^2 + \left(\mathscr{S}_{\mu\mu}\right)^2 + \left(\mathscr{C}_{\mu\mu}\right)^2 = 1$

- * Each can indicate New Physics, but what is its nature?
- * We have 4 unknowns: |P|, |S|, φ_P , φ_S
- * How can we establish New Physics?

Nik

General CP-violating New Physics

- * Determine φ_P , |P| and |S| as functions of φ_S
- * Assume that we have: $\{|S| = 0.30, \varphi_S = 20^\circ, \varphi_P = 30^\circ\} \xrightarrow{\overline{R}} |P| = 0.89$
- * Then the observables are:

 $\overline{R} = 0.84, \quad \mathscr{A}^{\mu\mu}_{\Delta\Gamma_s} = 0.37$ $\mathscr{S}_{\mu\mu} = 0.71, \quad \mathscr{C}_{\mu\mu} = 0.60$

General CP-violating New Physics

Illustration for x = 0, $|x| \rightarrow \infty$

$$\mathscr{A}^{\mu\mu}_{\Delta\Gamma_s} = 0.58, \quad \mathscr{S}_{\mu\mu} = -0.80, \quad \mathscr{C}_{\mu\mu} = 0.16$$

Illustration for $\Delta = 0^{\circ}$

Another interesting case: Δ = 0°
⇒ same CP-violating phase for C_S and C'_S

*
$$\overline{R}$$
, $\mathscr{A}^{\mu\mu}_{\Delta\Gamma_s}$ and $\mathscr{S}_{\mu\mu}$ are invariant under

$$|x| \to 1/|x|, \quad \varphi_S \to \varphi_S + \pi$$

* Again $\mathscr{C}_{\mu\mu}$ breaks symmetry by overall minus sign

Illustration for $\Delta = 0^{\circ}$

R. Fleischer, D. Galárraga Espinosa, RJ, G. Tetlalmatzi-Xolocotzi; Eur. Phys. J. C 78 (2018) 1 [arXiv:1709.04735 [hep-ph]]

Illustration for $\Delta = 0^{\circ}$

Illustration for $\Delta = 0^{\circ}$

