What is a null stream?

Hypotheses Performance of searching for

testing GW polarizations

C 1 :

Method for searching for and testing general relativity with supernovae gravitational-wave signals

Peter T. H. Pang

Friday 2nd November, 2018

polarizations

What is a gravitational wave?

Ripple of space-time first predicted by general relativity

Gravitational waves can be detected by measuring these length changes

polarization

What can generate gravitational waves?

- Binary black hole mergers
- Binary neutron star mergers
- Core-collaspe supernovae
- and more ...

Bavesian Null Stream

Binary black hole mergers

• Component masses: m_1, m_2

Component spins: \vec{s}_1, \vec{s}_2

• Luminosity distance D

Sky location θ, φ

Orientation: ι, ϕ

• Polarization angle: ψ

• Time of merger: t_c

Image taken from [1]

Binary neutron star mergers

- Similar to binary black hole mergers
- Matter tidal effect:
 - Tidal deformability $\Lambda = \lambda/m^5$, $\lambda = -Q_{ij}/E_{ij}$
 - Tidal coupling constant $\kappa_2^T = 3\left(\frac{q^4}{(1+q)^5}\Lambda_1 + \frac{q}{(1+q)^5}\Lambda_2\right)$
- Various post-merger phase behaviours

Core-collapse supernovae

- Death of a star
- Weaker compared to compact binaries
- Waveform not well modelled

Image taken from [2]

Bayesian Statistics

Parameter estimation

$$P(\vec{\theta}|d, \mathcal{H}) = \frac{P(d|\vec{\theta}, \mathcal{H})P(\vec{\theta}|\mathcal{H})}{P(d|\mathcal{H})}$$
(1)

• $P(\vec{\theta}|d,\mathcal{H})$: Posterior

• $P(d|\vec{\theta}, \mathcal{H})$: Likelihood

• $P(\vec{\theta}|\mathcal{H})$: Prior

• $P(d|\mathcal{H})$: Evidence

Multiple detections:

$$P(\vec{\theta}_c|\{d_i\}, \mathcal{H}) = P(\vec{\theta}_c|\mathcal{H})^{1-N} \prod_{i=1}^{N} P(\vec{\theta}_c|d_i, \mathcal{H})$$
 (2)

Performance testing GW

Bayesian Statistics

Hypothesis testing

$$\frac{P(\mathcal{H}_1|d)}{P(\mathcal{H}_2|d)} = \frac{P(d|\mathcal{H}_1)}{P(d|\mathcal{H}_2)} \frac{P(\mathcal{H}_1)}{P(\mathcal{H}_2)}$$

$$\mathcal{O}_2^1 = \mathcal{B}_2^1 \frac{P(\mathcal{H}_1)}{P(\mathcal{H}_2)}$$
(3)

- \mathcal{O}_2^1 : Odds ratio
- \mathcal{B}_2^1 : Bayes factor
- $P(\mathcal{H}_1)/P(\mathcal{H}_2)$: Prior odds

 $\mathcal{O}_2^1 > 1 \to \mathcal{H}_1$ is more plausible than \mathcal{H}_2 , vice versa

polarization

Signal-to-Noise ratio

The inner product:

$$\langle a|b\rangle = 4\Re \int \frac{a(f)b^*(f)}{S_n(f)} df \tag{4}$$

 $S_n(f)$ is the power spectral density of the noise The (optimal) signal-to-noise ratio (SNR):

$$SNR = \sqrt{\langle h|h\rangle} \tag{5}$$

What is a null stream?

Hypotheses Performance of searching for

testing GW

polarization

What is a null stream?

The coefficients $\{A_i\}$ and $\{\Delta t_i\}$ are given by the source sky location (θ, ϕ) .

Null Stream \rightleftharpoons Sky Location

What is a null stream?

Hypotheses Performance of searching for

Performanc testing GW

Conclusions

What is a null stream?

$$\begin{bmatrix} \tilde{d}_{\text{H1}} \\ \tilde{d}_{\text{L1}} \\ \vdots \\ \tilde{d}_{\alpha} \end{bmatrix} = \begin{bmatrix} F_{\text{H1},+} & F_{\text{H1},\times} \\ F_{\text{L1},+} & F_{\text{L1},\times} \\ \vdots & \vdots \\ F_{\alpha,+} & F_{\alpha,\times} \end{bmatrix} \begin{bmatrix} \tilde{h}_{+} \\ \tilde{h}_{\times} \end{bmatrix} + \begin{bmatrix} \tilde{n}_{\text{H1}} \\ \tilde{n}_{\text{L1}} \\ \vdots \\ \tilde{n}_{\alpha} \end{bmatrix}$$
(6)

$$d \equiv Fh + n$$

The null stream z is given by

$$z = P_{\text{null}}(\hat{\Omega})d = (I - F(F^{\dagger}F)^{-1}F^{\dagger})d = P_{\text{null}}n$$
 (7)

if $\hat{\Omega} = \hat{\Omega}_{\text{True}}$, The notion of *Null Energy*. E_{null} was introduced in Sutton *et.al* [4]

$$E_{\text{null}} = z^{\dagger} z \tag{8}$$

- A measure of the energy of the resultant null stream.
- If the data consist of noise only or $F = F_{\text{source}}$
 - $E_{\text{null}} \sim \chi^2$, DoF = $2N_f(N_{\text{IFO}} 2) = 2N_f(N_{\text{IFO}} N_{\text{modes}})$
- Likelihood function for Bayesian analysis

Hypotheses

Sutton et.al has shown that glitches can create similar effect as signals if we only consider E_{null} [4]

Two hypotheses are introduced for distinguishing glitches and signals

 $\mathcal{H}_{coherent}$:= The resultant strain consists of noise-only when the data are time shifted coherently according to the proposed sky location

$$\mathcal{H}_{coherent} \to \{\theta, \phi\}$$

 $\mathcal{H}_{\text{incoherent}} := \text{The resultant strain consists of noise-only when the data are time shifted independent to the proposed sky location <math>\mathcal{H}_{\text{incoherent}} \to \{\theta, \phi, \{\Delta t_i\}\}$

C---l--i---

Mock data simulation results

GW150914-like signal is injected

Type	$\log \mathcal{Z}_{\mathrm{coherent}}$	$\log \mathcal{Z}_{\mathrm{incoherent}}$	$\log \mathcal{B}_{ ext{incoherent}}^{ ext{coherent}}$
noise	-6.04	-6.17	0.13
glitch (H1)	-8.58	-8.68	0.09
glitch (L1)	-8.90	-8.80	-0.10
glitch (V1)	-7.45	-7.42	-0.04
glitch (H1&L1)	-11.75	-13.17	1.42
glitch (H1&V1)	-11.74	-13.17	1.42
glitch (L1&V1)	-11.39	-11.36	-0.03
signal	-12.14	-198.62	186.48

The values of $\log \mathcal{Z}_{coherent}$ agree with Sutton et.al's finding

signals

Mock data simulation results

Skymap of the source $\log p(\theta, \phi | \mathcal{H}_{coherent})$

The skymap shows that the sky location is well constrained

polarization

Detection Characterization

Mock data simulation

- AdLIGO-AdVirgo network is simulated
- Signal: 200 BBH signals are injected uniformly in co-moving volume
- Glitch: Same as signal but only appears in H1, L1, V1, H1&L1, H1&V1, L1&V1 coherently
- Noise: Simulated Gaussian noise with design sensitivity

polarizations

Detection Characterization

For SNR ≥ 20

• 87%, 86% and 39% of the injections have more than 5σ significance with respect to noise, single-detector glitches and two-detector glitches.

polarizatio

Detection Characterization

For SNR greater than 16 or 20, a significant fraction of detections has a statistical significance greater than 5σ .

SNR	Noise	Single-detector glitch	Two-detector glitch
8	27.3%	26.7%	4.1%
12	58.4%	59.0%	10.7%
16	80.3%	80.6%	21.3%
20	86.7%	85.8%	38.6%

What is a null stream?

Hypothese

Performance o searching for signals

Performance of testing GW polarizations

Conclusion

Testing GW Polarization

$$F_{\rm B} = -\frac{1}{2}\sin^2\theta\cos 2\phi = -F_{\rm L}$$

$$F_{\rm X} = -\sin\theta(\cos\theta\cos 2\phi\cos\psi - \sin 2\phi\sin\psi)$$

$$F_{\rm Y} = -\sin\theta(\cos\theta\cos 2\phi\sin\psi + \sin 2\phi\cos\psi)$$
(9)

Conclusion

Testing GW Polarization

By changing the beam pattern function in F and the corresponding DoF of χ^2

$$F = \begin{bmatrix} F_{\text{H1},+} & F_{\text{H1},\times} \\ F_{\text{L1},+} & F_{\text{L1},\times} \\ \vdots & \vdots \\ F_{\alpha,+} & F_{\alpha,\times} \end{bmatrix} \rightarrow \begin{bmatrix} F_{\text{H1},0} & F_{\text{H1},1} & \dots & F_{\text{H1},N} \\ F_{\text{L1},0} & F_{\text{L1},1} & \dots & F_{\text{L1},N} \\ \vdots & \vdots & \vdots & \vdots \\ F_{\alpha,1} & F_{\alpha,2} & \dots & F_{\alpha,N} \end{bmatrix}$$

$$DoF = 2N_f(N_{\text{IFO}} - 2) \rightarrow 2N_f(N_{\text{IFO}} - N)$$

$$(10)$$

 $Dot = 2i \cdot f(1 \cdot \text{IFO} - 2) + 2i \cdot f(1 \cdot \text{IFO} - 1 \cdot)$

The hypothesis changes from $\mathcal{H}_{coherent, GR} \to \mathcal{H}_{coherent, nonGR}$

What is a nul

Performance of

searching for signals

Performance of

testing GW polarizations

Testing GW Polarization

- Pure tensor signals are injected
- Pure tensor hypothesis outranks pure scalar hypothesis significantly

What is a nul stream?

Hypotheses Performance of

Performance of searching for signals Performance of

testing GW polarizations

Testing GW Polarization

- Fix the sky location to the injected value
- Pure tensor hypothesis outranks both pure scalar and pure vector hypotheses

Performance of testing GW

Testing GW Polarization

If we consider the limitation given by a general metric theory to be true:

- 7 possible combinations of polarization modes
 - pure scalar
 - 2 pure vector
 - 3 pure tensor
 - 4 pure scalar + pure tensor
 - **6** pure vector + pure tensor
 - 6 pure scalar + pure vector
 - 7 pure scalar + pure vector + pure tensor
- These combinations formed an set of exhaustive hypotheses
- A 6-detector network is required

A 3-detector network

- pure tensor, pure vector and pure scalar are testable
- Consider the following to be a set of exhaustive hypotheses
 - 1 pure scalar + pure tensor
 - 2 pure vector + pure tensor
 - 3 pure scalar + pure vector + pure tensor

polarization

$$P(GR|d) = \frac{1}{1 + \sum_{i} \mathcal{O}_{GR}^{\mathcal{H}_{i}}},$$
(11)

SNR required for GR to be true with 5σ statistical significance $(P(GR|d) \ge 1 - 2.87 \times 10^{-7})$:

Set	Without EM counterpart	With EM counterpart
1	~ 40	~ 23
2	_	~ 23
3	_	~ 23

Bayesian Null Stream

What is a null stream?

Performance o

searching for signals Performance

Conclusio

Conclusions

- Bayesian null stream analysis method is introduced
- Successfully distinguish between signal, glitch and noise
- Model-agnostic GW polarization test
- With a signal with electromagnetic counterpart with SNR greater than 23, general relativity can be accepted with 5σ statistical significance

Bayesian Null Stream

What is a null stream?

Hypotheses Performance o

signals
Performance of testing GW

Conclusions

Reference I

- Abbott et. al., Phys. Rev. Lett. 116, 061102 (2016)
- Ott, Classical Quantum Gravity 26, 063001 (2009)
- Gursel and Tinto, Phys. Rev. D 40, 3884 (1989)
- Sutton et.al, arXiv:0908.3665 (2010)

Bayesian Null Stream

What is a null stream?

Hypotheses

Performance o searching for signals

Conclusions

Sky Location Accuracy

- For SNR ≥ 40 , the area of 90% credible region is less than $10^4~{\rm deg^2}$
- For template-based parameters inference, the area of 90% credible region spans between 14 to 220 deg²

What is a null stream?

Hypotheses

Performance of searching for signals

polarization Conclusions

Sky Location Accuracy

Searched Area: Area of the sky with a posterior probability higher than that of the true location

What is a nul

Hypotheses

Performance of searching for signals

polarizations Conclusions

Sky Location Accuracy

P-P plot shows that the skymap is describing the source correctly

Hypothese

Performance of searching for

esting GW

Conclusions

Waveform reconstruction

$$h_{\text{recon}} = (F^{\dagger}F)^{-1}F^{\dagger}d \tag{12}$$

