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What is a gravitational wave?

Gravitational waves can be detected by measuring these length
changes
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generate gravitational
waves?

Binary black hole mergers
Binary neutron star mergers
Core-collaspe supernovae

and more ...
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Binary black hole mergers

Component masses: my, Mg
Component spins: 87, So
Luminosity distance D

Sky location 6, ¢
Orientation: ¢, ¢
Polarization angle:

Time of merger: t.
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Binary neutron star mergers

What is a null
stream?

Hypotheses . . .
e e Similar to binary black hole mergers

searching for

signals ® Matter tidal effect:

Performance of

esting GW B 13 5

o * Tidal deformability A = A/m”, A = —Qi;/E;;
4

Conclusions

® Tidal coupling constant k3 = 3 (&T)SAI + ﬁl\z)

® Various post-merger phase behaviours
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Core-collapse supernovae

® Death of a star

® Weaker compared to compact binaries

® Waveform not well modelled
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Bayesian Statistics

Parameter estimation

. P(d|f, H)P(61H)
PO = =5 ()

H) : Posterior
d|f,H) : Likelihood

|#) : Prior
d|H) : Evidence

Multiple detections:

N
P(0|{di}, H) = P(0c|H) N [ [ P(Ocldi, 1)
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Bayesian Statistics

Hypothesis testing

P(Hi|d) _ P(d[H1) P(Ha)

P(Ha|d)  P(d[H2) P(Ha2)
P(H,1)
P(Ho)

0, =B,

e 0} : Odds ratio
® 31 : Bayes factor
® P(H1)/P(H2) : Prior odds

O} > 1 — H, is more plausible than H, vice versa
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Signal-to-Noise ratio

The inner product:

ey = an [ P oy ()

Sn(f) is the power spectral density of the noise
The (optimal) signal-to-noise ratio (SNR):

SNR = \/(h[h) (5)
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The coefficients {A;} and {At;} are given by the source sky
location (6, ¢).

Null Stream = Sky Location
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‘What is a null
stream?

What is a null stream?

CZHI Fai1+  Fai,x nH1
dr1 Fui+ Frix FLJF] nL1
. = . . =+ .
: : : hx : (6)
d~a Fa,Jr Fa,>< 'ﬁ‘oz
d=Fh+n

The null stream z is given by

z=Pan()d = (I — F(FTF)"'FNd = Pyan (7)

if O = QTme, The notion of Null Energy. En. was introduced in
Sutton et.al [4]

Enull = ZTZ (8)

® A measure of the energy of the resultant null stream.
® [f the data consist of noise only or F' = Fyource

® Eaun ~ X*,DoF = 2N (Niro — 2) = 2N (Nro — Nmodes)
® Likelihood function for Bayesian analysis
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Hypotheses

What is a nu
tream
Hypotheses

Perfc nce of

Sutton et.al has shown that glitches can create similar effect as
signals if we only consider E,,y [4]

Two hypotheses are introduced for distinguishing glitches and
signals

Heoherent := The resultant strain consists of noise-only when the
data are time shifted coherently according to the proposed sky
location

Hcoherent — {07 ¢}

Hincoherent := The resultant strain consists of noise-only when the
data are time shifted independent to the proposed sky location
Hincoherent — {97 ¢7 {Atz}}
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Mock data simulation results

GW150914-like signal is injected

’ Type IOg Zcohcrcnt IOg Zincohcrcnt log Bfﬁgfﬁg?etm
noise -6.04 -6.17 0.13
glitch (H1) -8.58 -8.68 0.09
glitch (L1) 8.90 8.80 0.10
glitch (V1) 745 742 0.04
glitch (H1&L1) -11.75 -13.17 1.42
glitch (H1&V1) 1174 1317 1.42
glitch (L1&V1) 11.39 ~11.36 0.03
signal -12.14 -198.62 186.48

The values of log Zconerent agree with Sutton et.al’s finding
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Mock data simulation results

Skymap of the source log p(, ¢|Hcoherent )
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Injected value
*  Maximum posterior
30° :
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The skymap shows that the sky location is well constrained
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Detection Characterization

Mock data simulation
e AdLIGO-AdVirgo network is simulated

e Signal: 200 BBH signals are injected uniformly in co-moving
volume

® Glitch: Same as signal but only appears in H1, L1, V1,
H1&L1, H1& V1, L1&V1 coherently

® Noise: Simulated Gaussian noise with design sensitivity
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Detection Characterization

What is a null
S For SNR > 20
sonrchimg fox ® 87%, 86% and 39% of the injections have more than 50
signals A . . . .
Performance of significance with respect to noise, single-detector glitches and
testing GW .
polarization: two-detector glitches.
Conclusions
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Detection Characterization

For SNR greater than 16 or 20, a significant fraction of detections
has a statistical significance greater than 5o.

SNR  Noise Single-detector glitch Two-detector glitch‘

8 27.3% 26.7% 4.1%
12 58.4% 59.0% 10.7%
16  80.3% 80.6% 21.3%
20 86.7% 85.8% 38.6%
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Fx =

Fy

Testing GW Polarization
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—3 sin’ 0 cos 2¢ = —Fy,

— sin B(cos 6 cos 2¢ cos ¢ — sin 2¢ sin 1)
—sin @(cos 6 cos 2¢ sin vy + sin 2¢ cos )
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Testing GW Polarization

By changing the beam pattern function in F' and the
corresponding DoF of x?

Fu1,+ Frix Faio Fma - Foin
Fri+  Frix Frio Frin ... Funw
= . . — . . .
: : : : : : (10)
Fo v+ Fax Foqx Fo2 ... Fan

)

DoF = 2Nf(NIFO — 2) — 2Nf(NIFO - N)

The hypothesis changes from Hcoherent, GR =+ Hcoherent, nonGR
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Testing GW Polarization

® Pure tensor signals are injected

® Pure tensor hypothesis outranks pure scalar hypothesis

significantly

log B against SNR without sources’ sky locations known
10

—201 scalar-over-tensor e
vector-over-tensor o
GW170814 scalar-over-tensor o
—301 GW170814 vector-over-tensor
o
20 40 60 80

Signal-to-Noise Ratio
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Testing GW Polarization

What is a null
stream?

Hypotheses

® Fix the sky location to the injected value

Performance of
irching for

ignals ® Pure tensor hypothesis outranks both pure scalar and pure

Performance of

tosting GW vector hypotheses

polarizations

Conclusions

log B against SNR with sources’ sky locations known

o
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o vector-over-tensor oo
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Testing GW Polarization

If we consider the limitation given by a general metric theory to
L be true:

Performance of

® 7 possible combinations of polarization modes
testing GW

b W @ pure scalar
Conclusior ® pure vector
® pure tensor
@ pure scalar + pure tensor
@® pure vector 4 pure tensor
® pure scalar + pure vector
@ pure scalar + pure vector + pure tensor

® These combinations formed an set of exhaustive hypotheses
® A 6-detector network is required
A 3-detector network

® pure tensor, pure vector and pure scalar are testable
® Consider the following to be a set of exhaustive hypotheses

@ pure scalar + pure tensor
® pure vector 4 pure tensor
® pure scalar + pure vector + pure tensor
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1
_ 11
1+, 0l )

SNR required for GR to be true with 5o statistical significance
(P(GR|d) > 1 —2.87 x 1077):

P(GR|d) =

’ Set  Without EM counterpart With EM counterpart

1 ~ 40 ~ 23
2 — ~ 23
3 ~ 23
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Conclusions

® Bayesian null stream analysis method is introduced

Successfully distinguish between signal, glitch and noise

Model-agnostic GW polarization test

With a signal with electromagnetic counterpart with SNR
greater than 23, general relativity can be accepted with 5o
statistical significance
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g ® For SNR > 40, the area of 90% credible region is less than

10* deg?
e For template-based parameters inference, the area of 90%

o credible region spans between 14 to 220 deg?

polarizations

Conclusions
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Sky Location Accuracy

Searched Area: Area of the sky with a posterior probability higher
than that of the true location

1.0
L —— SNR > 8
—— SNR > 12
0.81
; SNR > 16
2 —— SNR > 20
§_>, 064 x cWB, SNR>8
3
[=1
2 0.41 3
k3
8
[
0.2
0.0 : |
10 10? 103 10*

Searched Area (deg?)
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Sky Location Accuracy
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P-P plot shows that the skymap is describing the source correctly

Performance of

Performance of
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B A
Conclusions . &
y=2x s
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Fraction of Injection
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Whitened . (t)

0.4

0.3

Waveform reconstruction

Brecon = (FTF)"'F1d

—— Reconstructed waveform
~ =~ Injected waveform
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