Space-time structure of hadron production in high-energy collisions

How closely are hadrons packed?

Silvia Ferreres-Solé Supervisor: Torbjörn Sjöstrand

Outline

- Motivation
- Timescale in physical processes
- Lund String Model
- Analysis and results
- Summary

Motivation

High-multiplicity pp collisions display a collective behaviour typical of heavy ion collisions: strangeness productions is enhanced.

Goal: Study hadron production density in different situations

Method: Space-time implementation in PYTHIA

[1] ALICE Collaboration (Adam, Jaroslav et al.) arXiv:1606.07424 [nucl-ex]

Friday, 2nd November 2018

Timescale in physical processes

Hadronization typical scales of order of fermi

Figure from arXiv:1412.3649v1

Linear force field in QCD

Colour confinement Non-existence of free quarks $V_{QCD}(r) = -\frac{4}{3}\frac{\alpha_s}{r} + \kappa r$

For large separation between partons

Approximation: linear potential expressed as string of zero width , whose string tension is

$$\kappa \approx 1 {\rm GeV/fm}$$

String breaking

Linearity between space-time and energy-momentum picture

Space—time implementation

Hadron Production Points

The definition for hadron production point is not unique

Temporal evolution of hadron production

Hadron density in central region

Hadron density in the longitudinal central region $|z| \leq 0.5$ fm

$$\frac{dN}{dV}\Big|_{|z| \le 0.5} = \frac{dN}{dxdydz}\Big|_{|z| \le 0.5} = \frac{dN}{dxdy} = \frac{dN}{2\pi rdr}$$

Hadron density in central region

Hadron density in central region

Close-packing in hadron rest frame

Number of overlapping hadrons in hadron rest frame

Hadrons are spheres with $r_p = 0.87 \text{ fm}$

Adjacent hadrons — Closest hadron on each side in the same string

Close-packing in hadron rest frame

Close-packing in hadron rest frame

Summary

- Close—packing is important in the central region and seems to affect mainly low transverse momentum hadrons.
- Hadronic overlap specially important in high—multiplicity pp collisions.

In the future:

- Include hadron scattering in PYTHIA.
- Analyze further hadronic close—packing and its effects.

References

- B. Andersson *et al.* **Parton fragmentation and string dynamic**, Phys. Rept. 97, Nos 2&3 (1983).
- T. Sjöstrand, *Jet fragmentation of multiparton configurations in a string framework,* Nuc. Phys. B248 (1984).

Two parton system

٠

 $p^+ = p^- =$

 m^2

Linearity between space-time and energy-momentum picture

$$\left|\frac{dp_z}{dt}\right| = \left|\frac{dp_z}{dz}\right| = \left|\frac{dE}{dt}\right| = \left|\frac{dE}{dz}\right| = \kappa$$
Initial motion of a system with energy E:
• Quark moving in +z direction
• Antiquark moving in -z direction
 $p^+ = p_q = E_q(1, 0, 0, 1)$
 $p^- = p_{\bar{q}} = E_{\bar{q}}(1, 0, 0, -1)$
 $t = \frac{E}{2\kappa}$
 \bar{q}
 m^2
 q
 p^+
 $t = \frac{E}{2\kappa}$
 \bar{q}
 p^+
 p^+
 $t = \frac{E}{2\kappa}$

Colour flow

Multiparton system

Time evolution of system initially composed of:

- Quark moving in +z direction.
- Gluon moving in +x direction.
- Antiquark moving in -z direction.

Parameter plane

Lund String Model implementation

Quark flavour chosen randomly: $u\overline{u}: d\overline{d}: s\overline{s} \approx 1: 1: \frac{1}{3}$

Hadron kind from quark content

Two adjacent quark-antiquark

Mass effect vs Spin effect

Transverse momentum of hadron from quark-antiquark (randomly)

Longitudinal momentum from

$$f(z) = \frac{(1-z)^a}{z} \exp\left(-b\frac{m_h^2}{z}\right)$$

Space—time implementation

Longitudinal spectrum

Space—time implementation

Transverse spectrum

Temporal evolution of hadron production

Radial evolution of hadron production

Hadron production for different multliplicities

Hadronic multiplicity constraints:

- Hadrons with lifetimes $au \geq au_{\pi^0}$ are stable.
- No decays taking place at r > 10 fm.

Only strong decays

• Secondary vertices enter with a weight one less than the number of hadron created in the decay.

