

UNIVERSITY OF AMSTERDAM

KM3NeT

Models of Particle Signatures in KM3NeT ORCA

Jordan Seneca November 2, 2018

Photo by Blaque X from Pexels

Introduction Procedure Models Reconstructions Conclusion

$\mathcal{O}(\text{GeV})$ detector, KM3Net $\ensuremath{\text{ORCA}}$

Dense compared to ARCA

68 000 PMTs.

 $0.004 \text{ km}^3 = 4 \text{ MegaTonnes}$ = $80 \times \text{Super-Kamiokande}$.

very cool multi-directional detection modules.

KM3NeT ORCA's goal: What is the Neutrino Mass Ordering (NMO)?

[Gomez-Cadenas et al., 2012]

Here are the parameters necessary to predict the oscillation probability of a neutrino through matter:

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$P_{3\nu}m(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13}^m \sin^2 \left(\frac{AL}{4} + \frac{\Delta m_{31}^2 + \Delta^m m^2)L}{8E_{\nu}}\right)$$

+some other terms

Atmospheric neutrinos can interact in water and create *product particles*.

 $3-5~{\rm GeV}$ v_e Charged Current interaction products

Neutral current \rightarrow hadronic particles.

Charged current \rightarrow lepton + hadronic particles

What do different particles look like to ORCA?

The plan

- 1. Create models of **light signatures** in ORCA from ν interaction **product particles**.
- 2. Use models for reconstruction of particle showers and ν events.

Procedure

Monte Carlo sample of signal from energetic particles in ORCA. Create **photo-electron Pattern PDFs (PEPPs)** from sample for each particle type.

The PEPP tells you the probability of obtaining a p.e. given particle type and position in phase space

"It's basically an interpolation of our particle interaction modelling in water." – me

▲□▶ ▲□▶ ▲ ≧▶ ▲ ≧▶ ▲ ≧ · • ○ ٩.0° 13/48

PEPPs Geometry

PEPPs agree with theoretical expectations

PEPPs Energy Dependence

Left (right): $\frac{20 \text{ GeV}}{2 \text{ GeV}}$ electron (proton)

PEPPs EM/Hadronic Comparison

 $\frac{\text{protonPEPP}}{\text{electronPEPP}}$

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ▶ < 16/48</p>

shower.

PEPPs Geometry

Bulk of increase in very forward Strictly brighter than electron in direction. front of Cherenkov angle.

Preliminary Reconstruction of EM and Hadronic Showers

Test statistic for single electron (EM shower) and hadronic shower.

Top: 25 - 80 hit region shows promise for 1σ separation.

Bottom: Projection along X for 25 - 35 hits.

Distinguish hadronic shower from electron shower possible?

At higher energies, EM shower \simeq hadronic shower \rightarrow loss of distinguishing power.

Conclusion

- KM3NeT **ORCA** aims at measuring the *Neutrino Mass Ordering.*
- Identifying the *type* of neutrinos and secondary particles assists this goal.
- Produced models of various particles which show their expected signals.
- The models can be put to use for reconstruction of events in the detector, including particle type.

19/48

Thank you for your attention!

Questions please.

■▶
■▶
■▶
■▶
■
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
><

Leftover slides

Certain extrasolar objects accelerate particles to high energies, which are called *cosmic rays*.

Cosmic rays collide with the Earth's atmosphere and produce neutrinos.⁴

Atmospheric neutrinos can travel through the entire Earth virtually unaffected, causing a ubiquitous flux.

³Artist's impression by HAP / A. Chantelauze ⁴[Molerach and Roulet, 2018][Honda et al., 1995]

Product particles from neutrino interactions produce more particles in *showers*

Charged particles emit *Cherenkov light* in water.

This light is emitted at an angle θ , and can be seen by *Photomultiplier tubes* (PMT)⁶

⁶Diagram from [Alaeian, 2014]

Motivation

Current models lump all events into showers or tracks.

シュペ 25/48

▲ ∰ ▶ < ≡ ▶</p>

- Only large scale differences used
- Simplified energy scaling

There is more stuff going on inside! Can we exploit details?

→ Create models of different product particles.

Procedure

Start off with simulated sample of ν -events in ORCA

Propagator and hit simulator is GEANT4 based **KM3Sim**

 $\sim 250 \ {\rm M}$ events

PEPPs Geometry

3 GeV electrons

Remember this because only native coordinates will be shown from now on.

PEPP Monte Carlo Simulations

Comparison of KM3Sim and PEPP MC, error bars and bands are for $\frac{1}{10}\sigma$.

Excellent match for

$$\overline{TotN_{\rm p.e.}}\equiv\sum^{N_{\rm events}}N_{\rm p.e.}.$$

PEPPs agree with original Monte Carlo simulation

PEPPs Time Arrival

Discerning power in time dependence

PEPPs Time Arrival

Discerning power in time dependence

Direction electron

Energy electron

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ▶ ○ ○ ○ ○ 36/48

Reconstruction Neutrino Event ΔE for ν_e -CC (ν_e -NC) above (below)

シペペ 36/48

Secondaries

Number of EM and Hadronic related hits

≣ ୬**୯**℃ 37/48

Secondaries

Event dependent hit yield

PDFs Time Arrival

PDFs Time Arrival

PDFs Time Arrival

Discerning power in time dependence

Motivation

Orca Energy resolution

⁷KM3NeT Phase II LOI

Reconstructions

Data cuts

- 1. > 4 hits
- 2. Within inner half volume of ORCA

Single hadronic shower \equiv all ν -interaction secondaries minus leading lepton.

Angle difference $\alpha \equiv \cos^{-1} \hat{p}_{\text{true}} \cdot \hat{p}_{\text{reco.}}$, where $\hat{p} \equiv \frac{1}{E_{\text{tot.}}} \sum_{i}^{N} \hat{p}_{i} E_{i}$.

Intrinsic limit paper⁸shows **best possible resolution** of ORCA.

Not directly comparable due to hit cut, but gives an idea.

Single electron.

Angle difference
$$\begin{split} &\alpha\equiv\cos^{-1}\hat{p}_{\text{true}}\cdot\hat{p}_{\text{reco.}}\text{, where} \\ &\hat{p}\equiv\frac{1}{E_{\text{tot.}}}\sum_{i}^{N}\hat{p}_{i}E_{i}. \end{split}$$

Resolution reproduces that of LOI

Single hadronic shower energy difference $\Delta E \equiv \frac{E_{h,\text{true}} - E_{h,\text{reco.}}}{E_{h,\text{true}}}$, where $E_h \equiv E_{\nu} - E_{\text{lep.}}$.

Energy difference resolution for low energies, close to intrinsic resolution for >4 hits.

 π_+ best at reconstructing hadronic showers, supposedly due to high presence of $\pi_{+/-}$ in hadronic showers.

 u_e -charged current angle difference.

Assuming 3 m position resolution and 5 ns timing resolution

Close to intrinsic limits at low energies.

500

45/48

Position of single hadronic shower, identical to ν -NC.

Reproduces resolutions for ν -CC as reported in LOI, but better resolution in other parameters accentuates this resolution!

Distance between shower maximum and vertex folded into model

ightarrow naturally centres at zero.

Position of single hadronic shower, identical to ν -NC.

Reproduces resolutions for ν -CC as reported in LOI, but better resolution in other parameters accentuates this resolution!

Distance between shower maximum and vertex folded into model

ightarrow naturally centres at zero.

Introduction Motivation Procedure **Models** Reconstructions Conclusion