Methods to measure the cosmic-ray composition with the Auger Engineering Radio Array

Fabrizia Canfora

- Ultra-high-energy cosmic rays and extensive air showers
- Radio emission from extensive air showers
- Pierre Auger Observatory & Auger Engineering Radio Array
- Cosmic-ray composition techniques based on radio detection

Ultra-high-energy cosmic rays

Ultra-high-energy cosmic rays 1 particle km^{-2} per century \rightarrow Large area detector

NNV - Lunteren 02.11.2018

Sources and acceleration mechanisms?

îm

Propagation?

Interactions?

Proton

Photon

Jeutrino

Extensive air shower

Primary particle? Mass? Charge? Energy? Arrival direction?

Fluorescence light Secondary particles at ground level

Radio signals

Radio emission from extensive air showers

• Geomagnetic:

- e⁺ and e⁻ separation in the Earth magnetic field
- radiation linearly polarized in the direction of the Lorentz force

• Charge excess:

- longitudinal charge imbalance
- radiation radially polarized towards the shower axis

Radio emission from extensive air showers

• Geomagnetic:

- e⁺ and e⁻ separation in the Earth magnetic field
- radiation linearly polarized in the direction of the Lorentz force

Asymmetric footprint

• Charge excess:

- longitudinal charge imbalance
- radiation radially polarized towards the shower axis

Ultra-high-energy cosmic rays Detector Sensitive to cosmic rays above 10¹⁷ eV

Located in the Argentinean pampa

Hybrid detector: combine independent detection methods

- 27 fluorescence telescopes (FD)
- 1660 particle detectors (SD)
- **153** antennas for radio detection (Auger Engineering Radio Array) ~17 km²

Surface area of about 3000 km² ~ 30 times Paris

Ultra-high-energy cosmic rays Detector Sensitive to cosmic rays above 10¹⁷ eV

Located in the Argentinean pampa

Surface area of about 3000 km² ~ 30 times Paris

- 27 fluorescence telescopes (FD)
- 1660 particle detectors (SD)
- **153** antennas for radio detection (Auger Engineering Radio Array) ~17 km²

Ultra-high-energy cosmic rays Detector Sensitive to cosmic rays above 10¹⁷ eV

Located in the Argentinean pampa

Surface area of about 3000 km² ~ 30 times Paris

- 27 fluorescence telescopes (FD)
- 1660 particle detectors (SD)
- **153** antennas for radio detection (Auger Engineering Radio Array) ~17 km²

Ultra-high-energy cosmic rays Detector Sensitive to cosmic rays above 10¹⁷ eV

Located in the Argentinean pampa

Surface area of about 3000 km² ~ 30 times Paris

- 27 fluorescence telescopes (FD)
- 1660 particle detectors (SD) +
 Scintillator Surface Detector (SSD)
 (Auger Upgrade)
- **153** antennas for radio detection (Auger Engineering Radio Array) ~17 km²

Ultra-high-energy cosmic rays Detector Sensitive to cosmic rays above 10¹⁷ eV

Located in the Argentinean pampa

Hybrid detector: combine independent detection methods

- 27 fluorescence telescopes (FD)
- 1660 particle detectors (SD)
- **153** antennas for radio detection (Auger Engineering Radio Array) ~17 km²

Surface area of about 3000 km² ~ 30 times Paris

Ultra-high-energy cosmic rays Detector Sensitive to cosmic rays above 10¹⁷ eV

Located in the Argentinean pampa

Surface area of about 3000 km² ~ 30 times Paris

- 27 fluorescence telescopes (FD)
- 1660 particle detectors (SD)
- 153 antennas for radio detection (Auger Engineering Radio Array) ~17 km² + antenna on top of each particle detector \rightarrow 1660 antennas (Auger Upgrade)

Cosmic rays mass composition

Lighter nuclei interact deeper in the atmosphere

 X_{max} atmospheric depth where the number of charged particles is the largest

Xmax from the radio signal

Fabrizia Canfora

1.

Parametrization of the energy density distribution:

Parametrization of the energy density distribution:

description of the geomagnetic and charge excess mechanisms

CoREAS simulation with a star-shaped antenna alignment in the shower plane $\vec{v} \times \vec{B} - \vec{v} \times \vec{v} \times \vec{B}$

Parametrization of the energy density distribution:

description of the geomagnetic and charge excess mechanisms

CoREAS simulation with a star-shaped antenna alignment in the shower plane $\vec{v} \times \vec{B} - \vec{v} \times \vec{v} \times \vec{B}$

Auger FD-RD hybrid data

 $X_{\rm max}^{\rm FD}$ = (700.10±16.56)g/cm²

 $X_{\rm max}^{\rm FD}$ =(701.66±12.54)g/cm²

Xmax from the spectral information

Xmax from the spectral information

2.

FD-RD X_{max} comparison for 3 events

Spectral index **b** as function of the the distance to the shower maximum The grey line is the best prediction line obtained using X_{max}^{FD}

0.5 0 02

-0.5

-1.5

-2.5

E_{ED}=(5.90±0.73)·10¹⁷eV

 $X_{\rm max}^{\rm FD}$ = 590.54 ± 25.62 g/cm²

 $X_{\rm max}^{\rm RD}$ = 556.82 ± 138.65 g/cm²

 $\theta_{\rm ED} = (56.6 \pm 0.7)^{\circ}$

 $\chi^2/(n-1) = 0.11$

50

2 stations

Summary

Two independent methods under investigations

1. X_{max} from the energy density footprint

The shape of the footprint is correlated to the distance to $X_{\rm max}$.

Footprint parametrizations:

geomagnetic and charge excess mechanisms

2. X_{max} from spectral information

The spectral slope of radio signals depends on X_{max} .

Cosmic rays that interact high in the atmosphere have a shorter pulse and a lower spectral slope.

The results of these analysis can be combined to obtain a mass composition reconstruction that uses all the information in the detected radio signal

Backup

The Auger Engineering Radio Array

- 153 radio antenna stations spread over 17 km² in the Argentinean pampa
- Sensitive to the frequency range of **30 to 80 MHz**
- Located within the particle detector array and in the field of view of fluorescence telescopes of the Pierre Auger Observatory

Energy density

Energy density in eV/m²

Time integral of Poynting vector

$$u = \varepsilon_0 c \left(\Delta t \sum_{t_1}^{t_2} |\vec{E}(t_i)|^2 - \Delta t \frac{t_2 - t_1}{t_4 - t_3} \sum_{t_3}^{t_4} |\vec{E}(t_i)|^2 \right)$$

$$\bigvee$$
Window $[t_1 - t_2]$ around Noise subtraction the maximum of the

Hilbert envelope

Energy density parametrization - Geo and Ce

1.b Parametrization of the energy density distribution:

b. description of the geomagnetic and charge excess mechanisms

Geomagnetic

1.b Parametrization of the energy density distribution:

b. description of the geomagnetic and charge excess mechanisms

1.0 Parametrization of the energy density distribution:

b. description of the geomagnetic and charge excess mechanisms

Shape of the energy density distribution

1.b Parametrization of the energy density distribution:

- b. description of the geomagnetic and charge excess mechanisms
- (A) that hit ground before emitting most radiation energy
- (B) that hit ground shortly after emitting all radiation energy
- (C) that have large distances between the ground and the air-shower development

Parametrization of the energy density distribution:

description of the geomagnetic and charge excess mechanisms

Reconstruction uncertainty ~ 41 g/cm²

Fabrizia Canfora

Spectral index parametrization

2.

$$b_T = \frac{1}{\nu_+ - \nu_-} \log_{10} \left[\frac{10^{b_G(\nu_+ - \nu_0)} + f(\Phi_{\text{obs}})R \cdot 10^{b_C(\nu_+ - \nu_0)}}{10^{b_G(\nu_- - \nu_0)} + f(\Phi_{\text{obs}})R \cdot 10^{b_C(\nu_- - \nu_0)}} \right]$$

where **b**_G and **b**_C.

$$b \times 10^2 = \frac{\beta}{1 + \exp(-\gamma \cdot D_{\text{max}}/1\text{km})} - \beta$$

 $\pmb{\beta}$ and $\pmb{\gamma}$ are functions of the distance to the shower axis d

R is the ratio between the scale parameter A_{c}/A_{g}

 $f(\Phi_{obs}) = \cos \Phi_{obs}$ in the $\vec{v} \times \vec{B}$ direction

Spectral index parametrization

2.

S. Jansen PhD thesis (2016)