A Neural Network Approach to Nuclear PDFs

Jacob Ethier

Work in progress with R. Abdul Khalek and J. Rojo **NNV Subatomic Physics Meeting** Nov. 2nd, 2018

Netherlands Organisation for Scientific Research

Motivation

- Early measurements of deeply inelastic electroniron scattering showed significant deviations from predictions (EMC effect)
- In the quark-parton model:

$$F_2^p(x) = x \sum_{q} e_q^2 \left(q(x) + \bar{q}(x) \right)$$

Parton distribution
functions (PDFs)

→ Structure functions of the nucleus cannot be described as a sum of the free nucleon structure functions (up to Fermi motion corrections)

• EMC effect is still not well understood

 \rightarrow Determining the modification of free nucleon PDFs in nuclei can provide crucial insight to origins of nuclear effects

J.J. Aubert et. al. Phys. Lett. B 123B (1983)

Motivation

Nuclear PDFs can also provide evidence of gluon saturation at low x and Q^2 (momentum transfer scale of lepton-nucleus scattering)

 \rightarrow Enhancement for heavier nuclei – region of saturation begins at larger x

----- HKN07 (LO) EPS09LO – nDS (LO) EKS98 $rcBK (Q^2 = 1.85 GeV^2)$ region 0.0 10⁻² 10⁻³ 10⁻¹ , 10⁻⁴

- Precise determination of nuclear PDFs are relevant for the upcoming electron-ion collider
- How are they determined? •

A. Accardi et. al. EIC White Paper arXiv:1212.1701

Х

Global QCD Analyses

• We want to obtain reliable information of the nonperturbative dynamics associated with nuclei structure within QCD

<u>Factorization</u> \rightarrow separation of short and long distance physics in pQCD expressions of experimental observables, e.g. for electron-proton scattering

Unpolarized deep inelastic
scattering (DIS) observable
$$\ell + (p, d) \rightarrow \ell' + X$$

 $d\sigma(x, Q^2) \simeq \sum_{f} \int_{x}^{1} \frac{d\xi}{\xi} f\left(\frac{x}{\xi}, Q^2\right) \frac{d\hat{\sigma}_f(\xi, Q^2)}{Hard scattering coefficient}$

- Collinear factorization → distributions depend on the fraction of longitudinal proton momentum
- The same formalism can be used to study modification of PDFs in nuclei

$$f^{(p)}(x,Q^2) \to f^{(p/A)}(x,Q^2,A)$$

• Nuclear PDFs are extracted from global data of lepton-nucleus and hadronnucleus collisions using QCD factorization

Global QCD Analyses

• Standard determination of nonperturbative functions form global QCD analyses:

→ Objects are parameterized $xf(x) = Nx^a(1-x)^b(1+c\sqrt{x}+dx)$

 \rightarrow Parameters are optimized with a least-squares fit

$$\chi^{2} = \sum_{e}^{N_{exp}} \sum_{i}^{N_{data}} \frac{(D_{i}^{e} - T_{i})^{2}}{(\sigma_{i}^{e})^{2}}$$

• However, there are many issues with performing single chi-squared minimizations

 \rightarrow Uncertainties computed by a Hessian method introduce tolerance criteria (uncertainties inflated by arbitrary factor)

 \rightarrow Parameters difficult to constrain are typically fixed

 \rightarrow Highly non-linear chi-squared function means many local minima that a single fit can be trapped in

- Nuclear PDFs require proton PDF as boundary condition \rightarrow typically taken from previous global analyses (which often make different theoretical assumptions!)
- We need a consistent theoretical framework and rigorous fitting procedure to determine nuclear PDFs and, more importantly, estimate their uncertainties

• Based on Bayesian statistical methods – robust determination of "observables" *O* (PDFs,etc.) and their uncertainties

$$E\left[\mathcal{O}\right] = \int d^{n}a\mathcal{P}(\vec{a}|data)\mathcal{O}(\vec{a})$$
$$V\left[\mathcal{O}\right] = \int d^{n}a\mathcal{P}(\vec{a}|data)\left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^{2}$$

• Bayes' theorem defines probability ${\cal P}$ as

$$\mathcal{P}(\vec{a}|data) = \frac{1}{Z}\mathcal{L}(data|\vec{a})\pi(\vec{a})$$

• Based on Bayesian statistical methods – robust determination of "observables" *O* (PDFs,etc.) and their uncertainties

$$E\left[\mathcal{O}\right] = \int d^{n}a\mathcal{P}(\vec{a}|data)\mathcal{O}(\vec{a})$$
$$V\left[\mathcal{O}\right] = \int d^{n}a\mathcal{P}(\vec{a}|data)\left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^{2}$$

• Bayes' theorem defines probability ${\cal P}$ as

$$\mathcal{P}(\vec{a}|data) = \frac{1}{Z} \mathcal{L}(data|\vec{a})\pi(\vec{a})$$

$$\underbrace{\mathbf{Likelihood function}}_{\mathbf{Likelihood function}}$$

$$\mathcal{L} = \exp\left(-\frac{1}{2}\chi^{2}(\vec{a})\right) \Rightarrow \text{Gaussian form in data with } \chi^{2} = \sum_{e}^{N_{exp}} \sum_{i}^{N_{data}} \frac{(D_{i}^{e} - T_{i})^{2}}{(\sigma_{i}^{e})^{2}}$$

• Based on Bayesian statistical methods – robust determination of "observables" *O* (PDFs,etc.) and their uncertainties

$$E\left[\mathcal{O}\right] = \int d^{n}a\mathcal{P}(\vec{a}|data)\mathcal{O}(\vec{a})$$
$$V\left[\mathcal{O}\right] = \int d^{n}a\mathcal{P}(\vec{a}|data)\left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^{2}$$

• Bayes' theorem defines probability ${\cal P}$ as

$$\mathcal{P}(\vec{a}|data) = \frac{1}{Z} \mathcal{L}(data|\vec{a})\pi(\vec{a})$$

$$\overset{\text{Priors}}{\uparrow}$$

$$\overset{\text{Priors}}{\stackrel{\text{Evidence}}{}} Z = \int d^{n}a\mathcal{L}(data|\vec{a})\pi(\vec{a})$$

• Based on Bayesian statistical methods – robust determination of "observables" *O* (PDFs,etc.) and their uncertainties

$$E\left[\mathcal{O}\right] = \int d^{n}a\mathcal{P}(\vec{a}|data)\mathcal{O}(\vec{a})$$
$$V\left[\mathcal{O}\right] = \int d^{n}a\mathcal{P}(\vec{a}|data)\left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^{2}$$

• Bayes' theorem defines probability ${\cal P}$ as

$$\mathcal{P}(\vec{a}|data) = \frac{1}{Z}\mathcal{L}(data|\vec{a})\pi(\vec{a})$$

• Monte Carlo technique is used to evaluate expectation value and variance integrals

 \rightarrow assuming uniform sampling of parameter space:

$$E\left[\mathcal{O}(\vec{a})\right] = \frac{1}{N} \sum_{k} \mathcal{O}(\vec{a}_{k}) \qquad V\left[\mathcal{O}(\vec{a})\right] = \frac{1}{N} \sum_{k} \left(\mathcal{O}(\vec{a}_{k}) - E[\mathcal{O}]\right)^{2}$$

• We can perform many fits to generate a Monte Carlo representation of the probability distribution

Neural Networks

- Consists of layers of neurons
- Each neuron contains a corresponding weight and bias (fit parameters)
- First layer of neurons take variables of function being In parametrized (e.g. longitudinal momentum fraction for PDFs)

$$\xi_i^{(1)} = \sigma_i^{(1)} \left(\sum_{j}^{N_{\text{inputs}}} w_{ij}^{(1)} x_j + b_i^{(1)} \right)$$

- Input of subsequent layers given by activation of previous layer neurons
- Output layer contains the result of the parameterized function(s)

$$\xi_{i}^{(l+1)} = \sigma_{i}^{(l+1)} \left(\sum_{j}^{N_{l}} w_{ij}^{(l+1)} \sigma_{j}^{(l)} + b_{i}^{(l+1)} \right)$$

$$\xi_{i}^{(L)} = \sum_{j}^{N_{L-1}} w_{ij}^{(L)} \sigma_{j}^{(L-1)} + b_{i}^{(L)}$$

QCD Analysis of NC DIS

• Observable (differential cross section/structure function) defined by collinear factorization

$$d\sigma^{eA \to eX} \simeq \sum_{q} d\hat{\sigma}^{eq \to eX}(x, Q^2) \otimes q(x, Q^2, A) \underbrace{p}_{\simeq \sum_{q} \frac{d\hat{\sigma}^{eq \to eX}(x, Q^2)}{\text{Hard scattering cross section}} \underbrace{\Gamma(Q_0^2, Q^2) \otimes q(x, Q_0^2, A)}_{\text{DGLAP Nuclear PDF Evolution}}$$

• <u>Strategy</u>

→ Use neural network with three input features (x, $\ln(x)$, A) and three outputs (corresponding to singlet, octet, and gluon)

$$x\Sigma = (1-x)^3 \text{NN}_{\Sigma}$$

 $xT_8 = (1-x)^3 \text{NN}_{T_8}$ where
 $xg = A_g (1-x)^4 \text{NN}_g$

$$\int_{0}^{1} dxx \left(\Sigma(x, A) + g(x, A) \right) = 1$$

$$\Sigma = u + \bar{u} + d + \bar{d} + s + \bar{s}$$
$$T_8 = u + \bar{u} + d + \bar{d} - 2s - 2\bar{s}$$

$$A_g = \frac{1 - \int_0^1 dx x \Sigma(x, A)}{\int_0^1 dx x g(x, A)}$$

Normalization to satisfy momentum sum rule

Parameter Optimization

• Data resampling to construct pseudo-data sets:

$$\widetilde{\mathcal{D}}_i^e = \mathcal{D}_i^e + R_i \alpha_i^e$$

- Prevent overfitting with cross validation:
 - \rightarrow Partition pseudo-data into training and validation sets
 - \rightarrow Train parameters on training set
 - \rightarrow Early stopping: end optimization at best fit of validation set
- Chi-squared minimization procedure:
 - \rightarrow Define cost function as chi-squared:

$$\chi^2 = \sum_{e}^{N_{exp}} \sum_{i}^{N_{data}} \frac{(\widetilde{\mathcal{D}}_i^e - T_i)^2}{(\alpha_i^e)^2}$$

 \rightarrow Neural network parameters trained with gradient descent

Results of NC DIS Analysis – Data vs Theory

- Excellent agreement with EPPS16 results within uncertainties
- Singlet and octet distributions strongly anti-correlated in data region

Results of NC DIS Analysis – Nuclear PDFs

nNNPDF1.0 Q=4 GeV

- Excellent agreement with EPPS16 results within uncertainties
- Singlet and octet distributions strongly anti-correlated in data region
 - \rightarrow Observables only sensitive to linear combination (sum) of the two distributions
- Mild *A*-dependence

- Excellent agreement with EPPS16 results within uncertainties
- Singlet and octet distributions strongly anti-correlated in data region

- Excellent agreement with EPPS16 results within uncertainties
- Singlet and octet distributions strongly anti-correlated in data region

- Excellent agreement with EPPS16 results within uncertainties
- Singlet and octet distributions strongly anti-correlated in data region

- Excellent agreement with EPPS16 results within uncertainties
- Singlet and octet distributions strongly anti-correlated in data region

- Ratio of nuclear PDFs with NNPDF3.1 (positive-definite) proton set
 → Both extracted using similar theoretical assumptions
- Suggests significant impact on gluon distribution in EMC region

 \rightarrow Need better constraints from gluon sensitive observables

- Ratio of nuclear PDFs with NNPDF3.1 (positive-definite) proton set
 → Both extracted using similar theoretical assumptions
- Suggests significant impact on gluon distribution in EMC region

 \rightarrow Need better constraints from gluon sensitive observables

Summary and Outlook

• Machine learning + Monte Carlo methods are important for robust extractions of nonperturbative functions and their uncertainties

→ Necessary for future global QCD studies that will contain large data sets and many fit parameters

• New approach to global nuclear PDF studies are being developed:

 \rightarrow Use of neural networks and machine learning tools to minimize bias

• Preliminary extractions of PDFs from NC DIS show good agreement with previous analyses

→ Still need additional DIS data sets not currently implemented (HERMES, Fermilab)

• Available NC DIS data not sensitive to separation of singlet and octet distributions

 \rightarrow Inclusion of additional observables (pA collisions, CC DIS, Drell-Yan) for flavor separation and uncertainty reduction is needed