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Motivation r
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* Early measurements of deeply inelastic electron-
iron scattering showed significant deviations from
predictions (EMC effect)

12

"r

/(ZF +A-2)F3)

A
Y3

10

F

* In the quark-parton model:

Fy(z) =) eq(q(x) +q(x)) P
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—> Structure functions of the nucleus cannot be
described as a sum of the free nucleon structure 13

functions (up to Fermi motion corrections) |
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e EMC effect is still not well understood
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—> Determining the modification of free nucleon
PDFs in nuclei can provide crucial insight to
origins of nuclear effects
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Motivation

* Nuclear PDFs can also provide evidence of gluon saturation at low x and O?
(momentum transfer scale of lepton-nucleus scattering)

- Enhancement for heavier nuclei — region of saturation begins at larger x

» Effect seen in ratio of nuclear to proton PDFs:

* Existing nuclear PDF
information contains large
uncertainty in the saturation
region

* Precise determination of nuclear PDFs are relevant for the upcoming electron-ion

collider

* How are they determined?

A. Accardi et. al. EIC White Paper arXiv:1212.1701
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Global QCD Analyses

* We want to obtain reliable information of the nonperturbative dynamics associated
with nuclei structure within QCD

Factorization > separation of short and long distance physics in pQCD expressions of
experimental observables, e.g. for electron-proton scattering

Unpolarized deep inelastic  do(x Q2 Z / ( ) do ¢ (&, QQ)

scattering (DIS) observable
, Hard scattering
(+(p,d) =0+ X Parton dlstr1but10n function (PDF)  .pefficient

* Collinear factorization = distributions depend on the fraction of longitudinal

proton momentum

e The same formalism can be used to study modification of PDFs in nuclei
2 A 2
fP(2,Q%) — fPI (2,02, A)

* Nuclear PDFs are extracted from global data of lepton-nucleus and hadron-
nucleus collisions using QCD factorization



Global QCD Analyses

» Standard determination of nonperturbative functions form global QCD analyses:

> Objects are parameterized T f(x) = Nz (1 — :C)b(l + cv/x + dx)

—> Parameters are optimized with a least-squares fit Nexp Naata

ZZ

* However, there are many issues with performing single chi-squared minimizations

—> Uncertainties computed by a Hessian method introduce tolerance criteria (uncertainties
inflated by arbitrary factor)

—> Parameters difficult to constrain are typically fixed

—> Highly non-linear chi-squared function means many local minima that a single fit can be
trapped in

* Nuclear PDFs require proton PDF as boundary condition = typically taken from
previous global analyses (which often make different theoretical assumptions!)

* We need a consistent theoretical framework and rigorous fitting procedure to determine
nuclear PDFs and, more importantly, estimate their uncertainties



Fitting Methodology

* Based on Bayesian statistical methods — robust determination of “observables” O
(PDFs,etc.) and their uncertainties

E 0] = /d”aP(&’|data)(9(EL’)
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V(0] = / I"aP(d|data) [O(@) — E[O]]
« Bayes’ theorem defines probability P as

P(dldata) = %E(data\c’i)w(d’)
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Likelihood function

(D¢ — T5)?

1 Nezp Ndata e
L = exp (—5)(2 (Ei)) - Gaussian form in data with x* = Z Z Z(Jf)z



Fitting Methodology

* Based on Bayesian statistical methods — robust determination of “observables” O
(PDFs,etc.) and their uncertainties
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Fitting Methodology

Based on Bayesian statistical methods — robust determination of “observables” O
(PDFs,etc.) and their uncertainties

B[0] = / 4" P (d]data) O (d)

V(0] = / I"aP(d|data) [O(G) — E[O]]
Bayes’ theorem defines probability ° as

P(dldata) = %L(data\c’i)w(&’)

Monte Carlo technique is used to evaluate expectation value and variance integrals

—> assuming uniform sampling of parameter space:
— 1 — — —
BO@)] =Y 0@)  VIO@] =~ Y (0@ - Fl0])?
k

We can perform many fits to generate a Monte Carlo representation of the
probability distribution



Neural Networks

J. Rojo arXiv:1809.04392 (2018)

* Consists of layers of neurons e £
2 1
* Each neuron contains a w®
corresponding weight and bias  * (&”
(f.it parameters) o o w® o
 First layer of neurons take
variables of function being In1/x (&Y o
parametrized (e.g. longitudinal D : o
momentum fraction for PDFs) S &
O _ o N~ W) L
1 1 1
& =o, W, ; Tr:+ b £ olr) =
7 () Z J () 5 ( ) 1 T e—T
* Input of subsequent layers Ni
. N [+1 [+1 [ [+1
given by activation of €§l+1) — 07;( +1) Z w( 1) ( ) + b( 1)
previous layer neurons j
. : Np—1
Output layer contains the f( Ly Z (L) ( L—1) N b( L)
result of the parameterized i W;; 0y

function(s) J



QCD Analysis of NC DIS

14
* Observable (differential cross section/structure >
function) defined by collinear factorization
eA—eX ~eq—eX 2 2

~ > " dee N (2,Q%) @ T(QF, Q) ® q(x, Q2 A)

Hard scattering DGLAP  Nuclear PDF
Cross section Evolution

* Strategy

—> Use neural network with three input features (x, In(x), 4) and three outputs
corresponding to singlet, octet, and gluon _ - _
(comesponding to sing gltion) S=uta+d+d+s+s

rY = (1 — z)°NNy Ts=u+u+d+d—2s—25
ZCTS = (1 — CC)3NNT8 where 1 — fol dxxz(x A)
A, = ’
rg = Ag(l — 33)4NNg g fol dgjgjg(aj’ A)

1
/ doex (X(z, A) + gz, A)) =1 Normalization to satisfy
0

momentum sum rule



Parameter Optimization

)

Validation Validate Best Fit

Resampling

Training

e Data resampling to construct pseudo-data sets: ]Sf — Df -+ RiOéS
* Prevent overfitting with cross validation:

—> Partition pseudo-data into training and validation sets

—> Train parameters on training set

—> Early stopping: end optimization at best fit of validation set
* Chi-squared minimization procedure:

ea:p Ndata 2

—> Define cost function as chi-squared: Z Z

—> Neural network parameters trained with gradient descent



Results of NC DIS Analysis — Data vs Theory
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Results of NC DIS Analysis — Nuclear PDF's
PRELIMINARY | PRELIMINARY
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* Excellent agreement with EPPS16 results within uncertainties
* Singlet and octet distributions strongly anti-correlated in data region

—> Observables only sensitive to linear combination (sum) of the two distributions

e Mild 4-dependence



Results of NC DIS Analysis — Nuclear PDF's
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* Excellent agreement with EPPS16 results within uncertainties

* Singlet and octet distributions strongly anti-correlated in data region

—> Observables only sensitive to linear combination (sum) of the two distributions

e Mild 4-dependence



Results of NC DIS Analysis — Nuclear PDF's
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* Excellent agreement with EPPS16 results within uncertainties

* Singlet and octet distributions strongly anti-correlated in data region

—> Observables only sensitive to linear combination (sum) of the two distributions

e Mild 4-dependence



Results of NC DIS Analysis — Nuclear PDF's
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Excellent agreement with EPPS16 results within uncertainties

Singlet and octet distributions strongly anti-correlated in data region

—> Observables only sensitive to linear combination (sum) of the two distributions

Mild A-dependence
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f(p/A) /P

Results of NC DIS Analysis — Nuclear PDF's
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* Ratio of nuclear PDFs with NNPDF3.1 (positive-definite) proton set
—> Both extracted using similar theoretical assumptions
* Suggests significant impact on gluon distribution in EMC region

—> Need better constraints from gluon sensitive observables

20



f(p/A) /P

Results of NC DIS Analysis — Nuclear PDF's
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Summary and Outlook

Machine learning + Monte Carlo methods are important for robust extractions of
nonperturbative functions and their uncertainties

—> Necessary for future global QCD studies that will contain large data sets and many
fit parameters
New approach to global nuclear PDF studies are being developed:

—> Use of neural networks and machine learning tools to minimize bias

Preliminary extractions of PDFs from NC DIS show good agreement with previous
analyses

—> Still need additional DIS data sets not currently implemented (HERMES, Fermilab)

Available NC DIS data not sensitive to separation of singlet and octet
distributions

—> Inclusion of additional observables (pA collisions, CC DIS, Drell-Yan) for flavor
separation and uncertainty reduction is needed
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