

Dark Matter Searches and Other Physics Signals in XENON I T, XENONNT and DARWIN

Patrick Decowski decowski@nikhef.nl

UNIVERSITEIT VAN AMSTERDAM

Nikhef

GRavitation AstroParticle Physics Amsterdam

Much astrophysical evidence for Dark Matter

Cosmological Evidence for DM

Patrick Decowski - Nikhef/UVA

Dark Matter Candidates

Bertone, Tait, Nature 562, 51

Detection of DM Particle Recoils

Assume WIMP is not only gravitationally interacting

M. W. Goodman and E. Witten, Phys. Rev. D 31, 3059 (1985).

Patrick Decowski - Nikhef/UVA

What can be measured?

Effective interaction Lagrangian (low E limit, $v_{WIMP} \sim 10^{-3}$ c):

with scalar (SI) and axial-vector (SD) couplings:

$$\frac{d\sigma}{dE_R} = \frac{m_T}{2\mu^2 v^2} \left[\sigma_{SI} F_{SI}^2(E_R) + \sigma_{SD} F_{SD}^2(E_R) \right]$$

WIMP-Nucleus Cross Section

Spin-independent cross section:

$$\sigma_{SI} = \frac{4\mu^2}{\pi} \left[Zf_p + (A - Z)f_n \right]^2 \propto A^2$$

Better sensitivity with high A

Spin-dependent cross section:

Need nucleus with spin: ¹⁹F, ²³Na, ⁷³Ge, ¹²⁷I, ¹²⁹Xe, ¹³¹Xe, ¹³³Cs (but no Ar!)

Analysis is done attributing **all** the (lack of) rate to SI or SD

Energy Recoil Spectra

Searching for Sub-GeVWIMPs

"Migdal"-effect

Drive to be sensitive to sub-GeV mass DM

Use annual modulation: DM claim

Patrick Decowski - Nikhef/UvA

Particle-dependent Response

Double Electron Capture

- Second order process like double β-decay, but longer lived - so far only measured in ¹³⁰Ba and ⁷⁸Kr
- ¹²⁴Xe is a candidate isotope

Physics Channels

WIMP searches

- Spin-independent
- Spin-dependent and inelastic interactions

• Solar axions and galactic axion-like particles (ALPs) ER

- Alternative dark matter candidates
- Coupling to electrons via axio-electric effect

Supernova neutrinos Sensitivity to all neutrino flavors (via CNNS) Complementarity to large-scale neutrino detectors Coherent neutrino-nucleus scattering (CNNS) Predicted by SM, only very recently observed!

- Low-energy solar neutrinos: pp, ⁷Be
 - Test/improve solar model, test neutrino models
- Neutrinoless double beta decay
 - Lepton number violating process, effective Majorana mass
 - No enrichment in ¹³⁶Xe required

ER

ER

Coherent Neutrino-Nucleus Scattering

JCAP 01, 044 (2014)

- $v + N_{Xe} \rightarrow v + N_{Xe}$
- Predicted by SM, recently observed
- CNNS is background for WIMPs,
- Steeply falling spectrum

Supernova Neutrinos

- Low threshold (due to S2-only)
- Negligible background due to short burst (~sec)
- >5 σ sensitivity to a supernova burst in Milky Way
- Detection of all 6 neutrino species via neutral current reactions

- Hundreds of events for a $27 M_{\odot}$ SN progenitor at 10 kpc
- Flavor-insensitive neutrino energy measurement
 - \rightarrow constrain total explosion energy and reconstruct the SN light curve

Solar Neutrinos

- Neutrino-electron elastic scattering
- Real-time measurement of neutrino flux \rightarrow 7.2 events/day from pp (40 ton LXe \rightarrow 0.9 events/day from ⁷Be detector)
- 2% (1%) statistical precision after 1 year (5 years) \rightarrow constrain solar models
- Neutrino survival probability measurement \rightarrow deviation from prediction indicates new physics
- Atomic binding effects have to be taken into account! Chen et al, arXiv:1610.04177

JCAP 01, 044 (2014)

Neutrinoless Double Beta Decay

Completed / Operating / Planning: XENON10, XENON100, XENON1T, XENONnT

Gran Sasso National Park near L'Aquila, Italy

XENONIT Dark Matter Experiment

Dual-Phase XeTPC

XENONIT: 3.2 tons of liquid xenon

Dual-Phase XeTPC

TPC assembly during Fall 2015

A state state party state, pr (The state) where states states

-

V V V V

No. of Concession, name

Main Backgrounds

Electronic recoils (ER):

- Materials: Low energy Compton scatters from radioactive contamination in detector components: U and Th chains, ⁴⁰K, ⁶⁰Co, ¹³⁷Cs
- **Solar neutrino** scattering off electrons
- Intrinsic contaminants: β decays of ²²²Rn daughters, ⁸⁵Kr,
 ¹³⁶Xe

Nuclear Recoils (NR):

- Radiogenic neutrons: spontaneous fission and (α, n) reaction from the U and Th chains in detector components
- Muon-induced neutrons
- Coherent scattering of neutrinos (mostly solar) off Xe nuclei

Radon decay chains

"Bad" Radon

Background

"Good" Radon

Thesis Sander Breur

²²²Rn background dominating

XENON Coll., arXiv:1512.0750

LXe self-shielding

1800

Calibration Systems

- Variety of calibration sources:
 - "Internal" sources: ^{83m}Kr, ²²⁰Rn
 - External sources: ²⁴¹AmBe, neutron generator
 - Materials: ⁶⁰Co, ^{129m}Xe, ^{131m}Xe

Cryogenic System

Electron Lifetime

Xenon is continuously purified Full drift length is 673 µs

Exposure

- Detector ran smoothly DAQ efficiency ~99%
- Two Science Runs: 32 days and 247 days
- About I ton-year of exposure accumulated in I.3 ton fid. volume

Examples of Corrections

Wide range energy reconstruction

Energy Reconstruction

- Parametrized in g1 and g2
 - Detector dependent
- Excellent ER energy reconstruction

• From 40 keV to 2.2 MeV

Improved calibration statistics

SRI

Detailed Response Model of detector

ER

NR

Efficiency

WIMP Search Region

ROI: 3PE < SI < 70PE equiv: ER: 1.4 - 10.6 keV_{ee} NR: 4.9 - 40.9 keV_{nr}

Analysis was: Blinded "Salted"

- Signal and background are modeled in (cSI, cS2, R, "z") space
- Fiducial mass increased from 1 ton \rightarrow 1.3 tons
- Total exposure of SR0+SR1: I ton x year

Ultra Low ER Background

• Lowest ever achieved in a dark matter detector!

Lowest Background of any DM experiment

Thesis Sander Breur

Accidental + Surface Backgrounds

Accidental Background

Surface Background

NR Background

Neutrons will multiple scatter in LXe - WIMPs will not

I ton FV

Results after unblinding + unsalting

Had to make postunblinding changes to BG model and Fiducial Mass segmentation: 2% (4%) increase in final limit (med. sens.)

Pie charts:

events passing all cuts, rel. prob. of BG and signal, assuming 200GeV WIMP

Ref NR region
200 GeV WIMP (for illustration)

Final limits from XENONIT

PRL 121, 111302, arXiv:1805.12562

From XENONIT to XENONnT

- Reuse most of XENONIT
- Larger inner cryostat vessel
- New TPC
- Additional ~250 PMTs (~500 total)
- Total of ~8 tons of LXe
- Funding complete
- Detector being built / designed
- Start in 2019

Our XENONnT Goal

- Increase Xe mass by 3x
- Reduce ²²²Rn background by I0x
- Veto the ultimate neutron background
- Complement continuous gas purification by liquid purification

New Magnetic Pump

- XENONnT R&D on XENONIT
- New Magnetic Pump

1100

- Increase LXe purity longer drift
- Reduce 222Rn contamination (from emanation of pump materials)

²²²Rn Background

²²²Rn contributions in XENONIT

- Ten-fold radon reduction:
 - New pumps:
 - Novel magnetic piston pump R&D
 - Continuous radon distillation
 - Already shown to work

Even further downstream

<u>XENONnT</u>

8t of LXe total Reuse a lot of XENONIT infrastructure Funding fully secured **Start in 2019**

Start in 2025

Summary

- The XENONIT experiment is world's most sensitive direct detection dark matter experiment
- Achieved ~I ton x year of exposure, unprecedented radiopurity
- Larger experiments will allow for more physics channels:
 - alternative DM particles, neutrino physics
- Planning XENONnT with 3x more Xe and 2x more PMTs
- Dreaming of 50t of Xe with DARWIN project...

LXe: Larger detectors, lower backgrounds

Cut & Count

Mass	1.3 t	1.3 t	0.9 t	0.65 t
$(cS1, cS2_b)$	Full	Reference	Reference	Reference
ER	627 ± 18	$1.62 {\pm} 0.30$	1.12 ± 0.21	$0.60 {\pm} 0.13$
neutron	$1.43 {\pm} 0.66$	$0.77 {\pm} 0.35$	$0.41 {\pm} 0.19$	$0.14 {\pm} 0.07$
$CE\nu NS$	$0.05{\pm}0.01$	$0.03 {\pm} 0.01$	0.02	0.01
AC	$0.47\substack{+0.27\\-0.00}$	$0.10\substack{+0.06\\-0.00}$	$0.06\substack{+0.03\\-0.00}$	$0.04\substack{+0.02\\-0.00}$
Surface	106 ± 8	$4.84{\pm}0.40$	0.02	0.01
Total BG	735 ± 20	$7.36 {\pm} 0.61$	$1.62{\pm}0.28$	$0.80 {\pm} 0.14$
$\operatorname{WIMP}_{\operatorname{best-fit}}$	3.56	1.70	1.16	0.83
Data	739	14	2	2
Jsing full S+BG model			"Sate" retere	
(SI, S2, R,	"Z") spa	ice		

Plate out in PTFE

LXe purification

Demonstrator at Columbia

