Comparison of *z*-resolutions

Kees Ligtenberg

Nikhef

June 1, 2018

Kees Ligtenberg (Nikhef)

z-resolution

Ξ June 1, 2018 1 / 12

イロト イポト イヨト イヨト

Niklhef

996

Contents

1 Comparison of hit z-resolution

Extrapolation to ILD TPC

イロト イロト イヨト イヨト z-resolution

Nik hef

2 / 12

∃ <\0<</p>

June 1, 2018

Kees Ligtenberg (Nikhef)

Single chip Timepix3-based GridPix detector

Timepix3-based GridPix:

- Micro-pattern gaseous detector with grid aligned to pixels
- 65K 55 μm \times 55 μm sized pixels

Timepix3 compared to its predecessor:

- Improved time resolution of 1.56 ns
- Simultaneous time and charge (ToT) measurement

Test beam with single chip Timepix3 detector with field shaping, guard electrode using 2.5 GeV electrons at ELSA facility (Bonn)

- T2K TPC gas (Ar:CF₄:iC₄H₁₀ 95:3:2)
- drift field is 280 V/cm

June 1, 2018

3 / 12

z-resolution with single chip GridPix detector

Resolution σ_z determined by longitudinal diffusion coefficient D_L and resolution at zero drift distance σ_{z0} : $\sigma_z^2 = \sigma_{z0}^2 + D_L^2(z - z_0)$

Measured $D_L = 226 \,\mu\text{m}/\sqrt{\text{cm}}$ (Magboltz predicts 201(5) $\mu\text{m}/\sqrt{\text{cm}}$) and $\sigma_{z0} = 139 \,\mu\text{m}$ (168 μm if including ToT < 0.60 μ s)

Kees Ligtenberg (Nikhef)

June 1, 2018

4 / 12

Experimental z-resolutions for pad readouts

resolution
$$\sigma_z$$
 is given by $\sigma_z^2 = \sigma_{z0}^2 + \frac{D_L^2 z}{N_{eff}}$ where $D_L = 225 \,\mu\text{m}/\sqrt{\text{cm}}$
B-field (T) $\sigma_{z0}(\mu\text{m}) \quad N_{eff}$
Pixel from testbeam 0 168 1

From single chip prototype

Kees Ligtenberg (Nikhef)

z-resolution

Ξ June 1, 2018 6 / 12

Sac

イロト イポト イヨト イヨト

resolution σ_z is given by $\sigma_z^2=\sigma_{z0}^2+\frac{D_L^2z}{N_{\rm eff}}$ where $D_L=225\,\mu{\rm m}/\sqrt{{\rm cm}}$

	B-field (T)	$\sigma_{z0}(\mu m)$	$N_{\rm eff}$
Pixel from testbeam	0	168	1
Pixel extrapolated to 6 mm	0	22	60

$N_{\rm eff} = 60$ as per the expected number of electrons

Kees Ligtenberg (Nikhef)

z-resolution

< ロ > < 同 > < 三 > < 三 > < 三 > の < 0</p>

resolution σ_z is given by $\sigma_z^2=\sigma_{z0}^2+\frac{D_L^2z}{N_{\rm eff}}$ where $D_L=225\,\mu{\rm m}/\sqrt{{\rm cm}}$

	B-field (T)	$\sigma_{z0}(\mu m)$	<i>N</i> _{eff}
Pixel from testbeam	0	168	1
Pixel extrapolated to 6 mm	0	22	60
ILD simulation	3.5	400	~ 8

Values currently in simulation, agrees roughly with the ILD design goal of σ_z between 0.4 mm - 1.4 mm for 0 - full drift. With these goals, other gasses with a higher longitudinal diffusion remain an option

Kees Ligtenberg (Nikhef)

z-resolution

イロト 不得 トイラト イラト・ラー

resolution σ_z is given by $\sigma_z^2=\sigma_{z0}^2+\frac{D_L^2z}{N_{\rm eff}}$ where $D_L=225\,\mu{\rm m}/\sqrt{{\rm cm}}$

	B-field (T)	$\sigma_{z0}(\mu m)$	$N_{\rm eff}$
Pixel from testbeam	0	168	1
Pixel extrapolated to 6 mm	0	22	60
ILD simulation	3.5	400	$\sim\!\!8$
DESY GEMs	1	306	30

From thesis Felix Mueller, simple fit, at B = 1 T

Kees Ligtenberg (Nikhef)

イロト イポト イミト イミト ニミー のくの

resolution σ_z is given by $\sigma_z^2=\sigma_{z0}^2+\frac{D_L^2z}{N_{\rm eff}}$ where $D_L=225\,\mu{\rm m}/\sqrt{{\rm cm}}$

	B-field (T)	$\sigma_{z0}(\mu m)$	$N_{\rm eff}$
Pixel from testbeam	0	168	1
Pixel extrapolated to 6 mm	0	22	60
ILD simulation	3.5	400	$\sim\!\!8$
DESY GEMs	1	306	30
Asian GEMs with gating		279	22

Z resolution of the Asian module with 2016 data with gating GEM as presented in LCTPC 2nd Analysis meeting

Kees Ligtenberg (Nikhef)

z-resolution

イロト イポト イヨト イヨト

= 900

Kees Ligtenberg (Nikhef)

z-resolution of track

For linear fits with N equally spaced points with the same errors, the uncertainty at the first and last point is given by $^{\rm 1}$

$$\sigma_z^{\text{track}} = \frac{2\sigma_z^{\text{hit}}}{\sqrt{N}} \tag{1}$$

This is the case for high momentum tracks perpendicular to the beam at the inner and outer TPC radius, and we expect:

	$\sigma_z^{\rm hit}$ at full drift	$\sigma_z^{\rm track}$
pixel TPC	3.05 mm	50 um
pixel TPC per 6 mm	0.37 mm	50 µm
ILD TPC simulation	1.24 mm	164 µm
TPC with DESY GEM parameters	0.70 mm	94 µm

¹see e.g. Blum and Rolandi, *Particle Detection with Drift Chambers* or Keisuke Time Stamping:CDC/TPC Comparison Studies Kees Ligtenberg (Nikhef) z-resolution June 1, 2018 8 / 12

From ILD simulation

using single muon tracks

The simulated resolution at 85° is in good agreement with the calculated values of 164, 94 and 50 μ m.

Kees Ligtenberg (Nikhef)

z-resolution

Timing from ILD simulation using SET

 $78\,\mu m/ns$ with $7\cdot 10^{-6}~(16\,\mu m)$ systematics , neglecting multiple scattering scattering

Kees Ligtenberg (Nikhef)

Timing from ILD simulation using SIT

Kees Ligtenberg (Nikhef)

June 1, 2018 11 / 12

イロト イロト イヨト イ

Conclusions

The track resolution was calculated to be:

	$\sigma_z^{\rm hit}$ at full drift	$\sigma_z^{\rm track}$	σ_t
pixels	3.05 mm	50 µm	0.80 ns
ILD TPC sim.	0.37 mm 1.24 mm	164 µm	1.25 ns
DESY GEM parameters	0.70 mm	94 µm	2.15 ns

Parameters from experimental results were used to simulate the z and time resolution, which was found to be in agreement with calculations

Kees Ligtenberg (Nikhef)

イロト イロト イヨト イヨト

Э

12 / 12

June 1, 2018