Setting confidence levels on the oscillation parameters

KM3NeT Outing Mooirivier, Dalfsen

31/05/2018

KM3NeT Outing Dalfsen

Outlook

- How does oscillation work
- How is oscillation measured
- Parametrized model
- Fitting and constraining of parameters

Motivation

Goal:

Determine the most probable values for the oscillation parameters

Motivation:

- Fundamental properties of neutrinos
- Oscillation parameters help us determine Neutrino Mass Hierarchy, which is still an undetermined parameter in the Standard Model
- CP violation angle helps in matter/anti-matter understanding
- Helps determine sensitivity to CP-violation, Majorana in new experiments

Neutrino oscillation

Relation between mass eigen state and flavour eigenstate:

$$\begin{aligned} |\nu_{\alpha}\rangle &= \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle \ \alpha = \mathsf{e}, \mu, \tau \\ |\nu_{i}\rangle &= \sum_{\alpha} U_{\alpha i} |\nu_{\alpha}\rangle \ \mathbf{i} = \mathsf{1}, \mathsf{2}, \mathsf{3} \end{aligned} \qquad U = \begin{pmatrix} \mathsf{1} & \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \mathsf{c}_{23} & \mathsf{s}_{23} \\ \mathsf{0} & -\mathsf{s}_{23} & \mathsf{c}_{23} \end{pmatrix} \times \begin{pmatrix} \mathsf{c}_{13} & \mathsf{0} & \mathsf{e}^{-i\delta}\mathsf{s}_{13} \\ \mathsf{0} & \mathsf{1} & \mathsf{0} \\ -\mathsf{e}^{i\delta}\mathsf{s}_{13} & \mathsf{0} & \mathsf{c}_{13} \end{pmatrix} \times \begin{pmatrix} \mathsf{c}_{12} & \mathsf{s}_{12} & \mathsf{0} \\ -\mathsf{s}_{12} & \mathsf{c}_{12} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} & \mathsf{1} \end{pmatrix} \\ c_{ij} = \cos\theta_{ij} \text{ and } s_{ij} = \sin\theta_{ij} \\ \delta \text{ is the CP-violation angle} \end{aligned}$$

- θ_{ij} are the neutrino mixing angles
- Left out majorana phases, which are decoupled from oscillation but can be included in the PMNS matrix

Neutrino mixing and mass hierarchy

Mass difference:

 $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$

- When $\Delta(m^2)_{sol} = \Delta m_{21}^2 > 0$ there are two solutions:
 - Normal hierarchy (NH) $m_1 < m_2 < m_3$
 - Inverted hierarchy (IH) $m_3 < m_2 < m_2$

$$\Delta m^2_{32} pprox \Delta m^2_{31} = \Delta (m^2)_{atm}$$

Source: KM3NeT Letter of Intent

Oscillation probabilities

Probabilities in vacuum are approx. given by

$$\begin{split} P_{3\nu}(\nu_{\mu} \to \nu_{e}) &\approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\left(\frac{\Delta m_{31}^{2} L}{4E_{\nu}}\right) \\ P_{3\nu}(\nu_{\mu} \to \nu_{\mu}) &\approx 1 - 4\cos^{2}\theta_{13} \sin^{2}\theta_{23} \left(1 - \cos^{2}\theta_{13} \sin^{2}\theta_{23}\right) \sin^{2}\left(\frac{\Delta m_{31}^{2} L}{4E_{\nu}}\right) \end{split}$$

- Depends on:
 - Parameters: θ_{13} , θ_{23} , Δm^2_{31} ,
 - E energy of the neutrino, L length travelled

Probabilities in matter

Atmospheric neutrinos

- Neutrino is created by decay process from a cosmic ray interaction in the upper atmosphere
- Symmetry in z-axis: azimuth angle does not matter
- Length travelled only depends on zenith angle Detector

Measurement

Parameter Values

Inverted Ordering $(\Delta \chi^2 = 4.14)$ Normal Ordering (best fit) Any Ordering bfp $\pm 1\sigma$ bfp $\pm 1\sigma$ 3σ range 3σ range 3σ range $0.307^{+0.013}_{-0.012}$ $0.307^{+0.013}_{-0.012}$ $\sin^2 \theta_{12}$ $0.272 \rightarrow 0.346$ $0.272 \rightarrow 0.346$ $0.272 \rightarrow 0.346$ $33.62^{+0.78}_{-0.76}$ $33.62_{-0.76}^{+0.78}$ $\theta_{12}/^{\circ}$ $31.42 \rightarrow 36.05$ $31.43 \rightarrow 36.06$ $31.42 \rightarrow 36.05$ $0.538^{+0.033}_{-0.069}$ $0.554^{+0.023}_{-0.033}$ $\sin^2 \theta_{23}$ $0.435 \rightarrow 0.616$ $0.418 \rightarrow 0.613$ $0.418 \rightarrow 0.613$ $47.2^{+1.9}_{-3.9}$ $48.1^{+1.4}_{-1.9}$ $\theta_{23}/^{\circ}$ $40.3 \rightarrow 51.5$ $41.3 \rightarrow 51.7$ $40.3 \rightarrow 51.5$ $0.02206^{+0.00075}_{-0.00075}$ $0.02227^{+0.00074}_{-0.00074}$ $\sin^2 \theta_{13}$ $0.01981 \rightarrow 0.02436$ $0.02006 \rightarrow 0.02452$ $0.01981 \rightarrow 0.02436$ $8.54^{+0.15}_{-0.15}$ $8.58^{+0.14}_{-0.14}$ $\theta_{13}/^{\circ}$ $8.09 \rightarrow 8.98$ $8.14 \rightarrow 9.01$ $8.09 \rightarrow 8.98$ $\delta_{\rm CP}/^{\circ}$ 234^{+43}_{-31} 278^{+26}_{-29} $144 \rightarrow 374$ $192 \rightarrow 354$ $144 \rightarrow 374$ Δm_{21}^2 $7.40^{+0.21}_{-0.20}$ $7.40^{+0.21}_{-0.20}$ $6.80 \rightarrow 8.02$ $6.80 \rightarrow 8.02$ $6.80 \rightarrow 8.02$ 10^{-5} eV^2 $\Delta m_{3\ell}^2$ $+2.399 \rightarrow +2.593$ $+2.494^{+0.033}_{-0.031}$ $-2.465^{+0.032}_{-0.031}$ $-2.562 \rightarrow -2.369$ $+2.399 \rightarrow +2.593$ $-2.536 \rightarrow -2.395$ 10^{-3} eV^2

Source: JHEP 01 (2017) 087, [arXiv:1611.01514], www.nu-fit.org

NuFIT 3.2 (2018)

Parametrizing the model

$$R_{a}(E,\theta) = \frac{\rho_{\text{water}}}{m_{\text{nucleon}}} \times \sum_{b} \sigma_{a}(E) \times P_{a,b}^{\text{osc}}(E,\theta) \times \Phi_{b}^{\text{atm}}(E,\theta)$$

$R_a(E, \theta)$	Interaction rate of flavor a
 m _{nucleon}	Particle density of the medium
σ_{a}	Cross section of flavor a
$P_{a,b}^{osc}(E, heta)$	Oscillation probability of flavor b $ ightarrow$ a
$\Phi_b^{atm}(E,\theta)$	Flux of flavor b

Parametrizing the model

$$R_{a}(E,\theta) = \frac{\rho_{\text{water}}}{m_{\text{nucleon}}} \times \sum_{b} \sigma_{a}(E) \times P_{a,b}^{\text{osc}}(E,\theta) \times \Phi_{b}^{\text{atm}}(E,\theta)$$

Calculated / tabulated: •Flux: Honda flux tables •Oscillation probabilities: calculate

Parametrized:
Cross section: from MC or effective theories
Water: effective mass calculation (approximate)
Measurement: detector response, resolution per flavour (shower vs. track)

ParamNMH

- Quickly (seconds) generate parametrized MC data
- Quickly (seconds) generate model data
- Make plots of n-year neutrino measurement (seconds)
- Fit MC to model (hours) with
 - Determine mass hierarchy sensitivity (fit all parameters, runtime: few hours)
 - Determine parameter confidence levels (fit all but interested parameters, runtime: 1 day)

Results: χ^2 -values of contour plot

χ^2 plane around minimum

31/05/2018

Results: confidence contour

Conclusion

Using parametrized model (and back of envelope calculation) we can already get quite close to the best fitted data available

NuFit 3.2 3 σ limits	ParamNI 3 σ limits (back o
$ heta_{23} \in$ (40.3, 51.5)	$ heta_{23}\in$ (39.9, 5
$rac{\Delta m_{32}^2}{10^{-3} eV^2} \in (2.399, 2.593)$	$rac{\Delta m_{32}^2}{10^{-3} eV^2} \in (1)$

MH of envelope) 50.9) 2.33, 2.55)

Next steps

ParamNMH

- Improve fits / constraints in parametrized model
- Constrain different parameters (if necessary)
- Fit against full MC data
- Maintain codebase (Liam's retiring)
- NMH (Bruno's program)
 - Fit full MC against model