Characterising Details in ORCA ν-events
Dalfsen

Projected outcomes

- Model of charged particles in ORCA
- ν-interaction model independent ORCA event analysis tool
- Sensitivity to interaction flavour
- Sensitivity to Bjorken-Y
- Fast Monte-Carlo

Motivation:

$$
\begin{aligned}
& \text { Global topology models } \\
& \text { could be better }
\end{aligned}
$$

Motivation

- track-like: $\mu\left(\nu_{\mu}\right.$-CC, muonic ν_{τ}-CC)
- shower-like: no μ (ν-NC, ν_{e}-CC, other ν_{τ}-CC)
- KM3NeT

Motivation

- Interaction model dependent
- Minimal interaction flavour and current information
- Minimal Bjorken-Y information

There is more stuff going on inside! Can we exploit details?

Procedure

Why we are optimistic:

1. ORCA is dense
(Detect finer features)

Procedure

Why we are optimistic:

1. ORCA is dense
(Detect finer features)
2. KM3NeT has multidirectional DOMs
(Additional dimensions in phase space)

Procedure

Why we are optimistic:

1. ORCA is dense
(Detect finer features)
2. KM3NeT has multidirectional DOMs
(Additional dimensions in phase space)
3. Events propagate in water
(Straighter light path)

Procedure

Why we are optimistic:

1. ORCA is dense
(Detect finer features)
2. KM3NeT has multidirectional DOMs
(Additional dimensions in phase space)
3. Events propagate in water
(Straighter light path)
4. (Our detection modules look super cool)

Procedure

Used ORCA 1-100GeV all flavours ν-interaction samples

Procedure

Chain of simulation:

$$
\begin{aligned}
& \downarrow \text { GENIE - - .-....... Interaction } \\
& \downarrow \text { Km3Sim - - - Propagation + Re-interactions }
\end{aligned}
$$

Secondaries

Number of EM and Hadronic related hits

Secondaries

Event dependent hit yield

Procedure

Chain of simulation:

$$
\begin{aligned}
& \downarrow \text { GENIE --------- - Interaction } \\
& \downarrow \text { Km3Sim - - - Propagation + Re-interactions } \\
& \text { JTE---------PMT response + Trigger }
\end{aligned}
$$

We wanted to:

- be independent from GENIE
- remove assumptions on E-scaling of showers

Procedure

Model whole event
 \downarrow
 E-scaling
 \downarrow
 Model secondary particles
 E free

Procedure

Model whole event

 Model secondary particles

E-scaling
 \downarrow E free

In technical terms:
Expand JPhysics PDF tables and transformers, JSirene CDF tables, JApplication HDG, CDG and PDG structures to include energy as parameter and feed secondary light yield

Description

1. Pick secondary particle
2. $E_{\text {particle, }} D_{\text {vertex }}, \alpha, \theta_{p m t}, \phi_{p m t}, t_{\text {arrival }}$ of photo-electrons from particle gets filled in 6d histogram
3. Make PDF from histogram for each particle

The PDF tells you the expected number of PE given particle type and position in phase space

PDFs Geometry

PDFs Geometry

PDFs Geometry

PDFs Geometry

PDFs Geometry

PDFs Geometry

PDFs Time Arrival

Normalised view

PDFs at $\cos (\alpha)=0.70$ and $R=10 \mathrm{~m}$

Normalized PDFs at $\cos (\alpha)=0.70$ and $R=10 \mathrm{~m}$

PDFs Time Arrival

Angle dependence

PDFs Time Arrival

Discerning power in time dependence

Normalized PDFs at $\cos (\alpha)=0.99$ and $\mathrm{R}=2 \mathrm{~m}$

Applications

Accuracy of PDFs

Potential for fast MC!

Reconstruction attempts

$\alpha 6 d$ (7d) hypothesis above (below) for e-CC

α for $\mathrm{H} 1\left(\mathrm{e}^{-}+\mathrm{p} / \mathrm{e}\right)$ and $\mathrm{HO}\left(\mathrm{p} / \mathrm{e}^{-}\right), 4 \mathrm{GeV}$

Reconstruction attempts

E reco 6d (7d) hypothesis above (below) for e-CC

Reconstruction attempts

3d hypothesis Single electron and proton: ???

Reconstruction attempts

(BIG) room for improvement

Next step

- 7d Likelihood analysis (free electron + coupled electron/proton) improvements...
- Probe bjorken-Y reco
- Finer time resolution for PDFs?
- Include K-40 background + PMT response

Thank you for listening!

Question time

Leftovers..

Motivation

Orca Energy resolution

Motivation

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$
\begin{array}{r}
P_{3 \nu} m\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \cos ^{2} \theta_{13}^{m} \sin ^{2}\left(\frac{A L}{4}+\frac{\left.\Delta m_{31}^{2}+\Delta^{m} m^{2}\right) L}{8 E_{\nu}}\right) \tag{1}\\
- \text { someotherterms }
\end{array}
$$

Motivation

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$
\begin{array}{r}
P_{3 \nu} m\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \cos ^{2} \theta_{13}^{m} \sin ^{2}\left(\frac{A L}{4}+\frac{\left.\Delta m_{31}^{2}+\Delta^{m} m^{2}\right) L}{8 E_{\nu}}\right) \tag{1}\\
- \text { someotherterms }
\end{array}
$$

Motivation

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$
\begin{array}{r}
P_{3 \nu} m\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \cos ^{2} \theta_{13}^{m} \sin ^{2}\left(\frac{A L}{4}+\frac{\left.\Delta m_{31}^{2}+\Delta^{m} m^{2}\right) L}{8 E_{\nu}}\right) \tag{1}\\
- \text { someotherterms }
\end{array}
$$

Motivation

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$
\begin{array}{r}
P_{3 \nu} m\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \cos ^{2} \theta_{13}^{m} \sin ^{2}\left(\frac{A L}{4}+\frac{\left.\Delta m_{31}^{2}+\Delta^{m} m^{2}\right) L}{8 E_{\nu}}\right) \tag{1}\\
- \text { someotherterms }
\end{array}
$$

Motivation

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$
\begin{array}{r}
P_{3 \nu} m\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \cos ^{2} \theta_{13}^{m} \sin ^{2}\left(\frac{A L}{4}+\frac{\left.\Delta m_{31}^{2}+\Delta^{m} m^{2}\right) L}{8 E_{\nu}}\right) \\
- \text { someotherterms }
\end{array}
$$

Motivation: number of electrons in path Requires knowledge of the following:

- The matter density of the Earth
- The distance travelled through the Earth

Motivation: number of electrons in path Requires knowledge of the following:

- The matter density of the Earth
- The distance travelled through the Earth

Motivation: number of electrons in path

Requires knowledge of the following:

- The matter density of the Earth
- The distance travelled through the Earth
- \rightarrow known by neutrino direction

Figure: Parametrization of electrons in path using the Earth

Motivation: neutrino flavor

The flavor of a neutrino is defined by the interaction it induces.

- Type of product particles
- Energies and directions of product particles

Motivation: neutrino flavor

The flavor of a neutrino is defined by the interaction it induces.

- Type of product particles
- Energies and directions of product particles

Motivation: neutrino energy

The neutrino energy affects the following outcomes:

- The size of the event in the detector (PMT positions)
- The number of $\gamma_{\text {cherenkov }}$

Procedure

Signatures are visible in the detector hit pattern.
What affects the hit pattern?

Procedure

Global topology, size, brightness, and direction directly couple to hit pattern.

Procedure

Global topology, size, brightness, and direction directly couple to hit pattern.
"Global Topology": The shape of an entire event vS.
"Individual topology": The shape of a single particle

Procedure

Global topology, size, brightness, and direction directly couple to hit pattern.
"Global Topology": The shape of an entire event vS.
"Individual topology": The shape of a single particle
Disclaimer: not really individual since particle themselves decay/re-interact into other particles.

What affects global topology?

Product particle types

Product particle energies

Product particle directions

