Characterising Details in ORCA ν -events

Jordan Seneca May 31, 2018

Projected outcomes

- Model of charged particles in ORCA
- \blacktriangleright ν -interaction model independent ORCA event analysis tool

<ロト
・ロト

- Sensitivity to interaction flavour
- Sensitivity to Bjorken-Y
- Fast Monte-Carlo

Motivation:

Global topology models could be better

<ロト
・ロト

Motivation

- track-like: μ (u_{μ} -CC, muonic u_{τ} -CC)
- ▶ shower-like: no μ (ν -NC, ν_e -CC, other ν_{τ} -CC)

Motivation

< ロ > < 母 > < 臣 > < 臣 > 三 の Q C 5/30

- Interaction model dependent.
- Minimal interaction flavour and current information
- Minimal Bjorken-Y information

There is more stuff going on inside! Can we exploit **details**?

・ロト ・日下・ ・ ヨト・

æ

-

Why we are optimistic:

1. ORCA is dense

(Detect finer features)

Why we are optimistic:

1. ORCA is dense

(Detect finer features)

2. KM3NeT has multidirectional DOMs

(Additional dimensions in phase space)

Why we are optimistic:

1. ORCA is dense

(Detect finer features)

2. **KM3NeT has multidirectional DOMs** (Additional dimensions in phase space)

3. Events propagate in water (Straighter light path)

Why we are optimistic:

1. ORCA is dense

(Detect finer features)

2. **KM3NeT has multidirectional DOMs** (Additional dimensions in phase space)

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ のへで 7/30

- 3. Events propagate in water (Straighter light path)
- $4_{\rm \odot}$ (Our detection modules look super cool)

Used ORCA 1-100GeV all flavours ν -interaction samples

・ロト ・ @ ト ・ E ト ・ E ・ の へ ? 8/30

Chain of simulation:

↓----- Input ν ↓ GENIE ----- Interaction ↓ Km3Sim - - Propagation + Re-interactions JTE ----- PMT response + Trigger

Secondaries

Number of EM and Hadronic related hits

E つくぐ 10/30

Secondaries

Event dependent hit yield

シュペ 10/30

Chain of simulation:

↓ ----- Input *ν* ↓ GENIE ----- Interaction
 ↓ Km3Sim - - Propagation + Re-interactions
 ↓ TE ----- PMT response + Trigger

We wanted to: - be independent from GENIE - remove assumptions on E-scaling of showers

Model whole event E-scaling ↓ ↓ Model secondary particles E free

◆□ ▶ ◆圖 ▶ ◆ 壹 ▶ ◆ 壹 ▶ ○ 壹 · ⑦ � � ? 12/30

Model whole event E-scaling ↓ ↓ Model secondary particles E free

In technical terms:

Expand JPhysics PDF tables and transformers, JSirene CDF tables, JApplication HDG, CDG and PDG structures to include energy as parameter and feed secondary light yield

Description

- 1. Pick secondary particle
- 2. $E_{particle}$, D_{vertex} , α , θ_{pmt} , ϕ_{pmt} , $t_{arrival}$ of photo-electrons from particle gets filled in 6d histogram
- 3. Make PDF from histogram for each particle

The PDF tells you the expected number of PE given particle type and position in phase space

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ □ = つへで 14/30

PDFs Time Arrival

Normalised view

◆□ ▶ ◆圖 ▶ ▲ ≧ ▶ ▲ ≧ ▶ ○ 毫 の Q ℃ 15/30

PDFs Time Arrival

Angle dependence

< □ ▶ < 圖 ▶ < ≧ ▶ < ≧ ▶ Ξ • ዏ Q ↔ 15/30

PDFs Time Arrival

Discerning power in time dependence

◆□ ▶ ◆圖 ▶ ▲ ≧ ▶ ▲ ≧ ▶ ○ 毫 の Q ペ 15/30

Applications

◆□ ▶ ◆圖 ▶ ▲ ≧ ▶ ▲ ≧ ▶ ○ 毫 の Q ℃ 16/30

Accuracy of PDFs

Potential for fast MC!

Reconstruction attempts α 6d (7d) hypothesis above (below) for e-CC

Reconstruction attempts

E reco 6d (7d) hypothesis above (below) for e-CC

Reconstruction attempts

3d hypothesis Single electron and proton: ???

Reconstruction attempts

(BIG) room for improvement

Next step

- 7d Likelihood analysis (free electron + coupled electron/proton) improvements...
- Probe bjorken-Y reco
- Finer time resolution for PDFs?
- Include K-40 background + PMT response

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�� 19/30

Thank you for listening!

Question time

Leftovers..

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

²KM3NeT Phase II LOI

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- ► The number of electrons in the neutrino's path
- Energy of the neutrino
- ► Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$P_{3\nu}m(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13}^m \sin^2 \left(\frac{AL}{4} + \frac{\Delta m_{31}^2 + \Delta^m m^2)L}{8E_{\nu}}\right)$$

-some other terms

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- ► The number of electrons in the neutrino's path
- Energy of the neutrino
- ► Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$P_{3\nu}m(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13}^m \sin^2 \left(\frac{AL}{4} + \frac{\Delta m_{31}^2 + \Delta^m m^2)L}{8E_{\nu}}\right)$$

-some other terms

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- ► The number of electrons in the neutrino's path
- Energy of the neutrino
- ► Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$P_{3\nu}m(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13}^m \sin^2 \left(\frac{AL}{4} + \frac{\Delta m_{31}^2 + \Delta^m m^2)L}{8E_{\nu}}\right)$$

-some other terms

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- ► The number of electrons in the neutrino's path
- Energy of the neutrino
- ► Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$P_{3\nu}m(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13}^m \sin^2 \left(\frac{AL}{4} + \frac{\Delta m_{31}^2 + \Delta^m m^2)L}{8E_{\nu}}\right)$$

-some other terms

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- ► The number of electrons in the neutrino's path
- Energy of the neutrino
- ► Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$P_{3\nu}m(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13}^m \sin^2 \left(\frac{AL}{4} + \frac{\Delta m_{31}^2 + \Delta^m m^2)L}{8E_{\nu}}\right)$$

-some other terms

Motivation: number of electrons in path Requires knowledge of the following:

- ► The matter density of the Earth
- ► The distance travelled through the Earth

Motivation: number of electrons in path Requires knowledge of the following:

- ▶ The matter density of the Earth
- ► The distance travelled through the Earth

Motivation: number of electrons in path Requires knowledge of the following:

- ▶ The matter density of the Earth
- ► The distance travelled through the Earth
 - \blacktriangleright \rightarrow known by neutrino direction

Figure: Parametrization of electrons in path using the Earth

Motivation: neutrino flavor

The flavor of a neutrino is defined by the interaction it induces.

Type of product particles

Energies and directions of product particles

Motivation: neutrino flavor

The flavor of a neutrino is defined by the interaction it induces.

◆□▶ ◆□▶ ◆ E ▶ ◆ E ▶ ● E • つへで 26/30

- Type of product particles
- Energies and directions of product particles

Motivation: neutrino energy

The neutrino energy affects the following outcomes:

► The size of the event in the detector (PMT positions)

◆□▶ < @ ▶ < E ▶ < E ▶ ○ 27/30</p>

• The number of $\gamma_{cherenkov}$

Signatures are visible in the detector hit pattern.

What affects the hit pattern?

Global topology, size, brightness, and direction *directly* couple to hit pattern.

Global topology, size, brightness, and direction *directly* couple to hit pattern.

"Global Topology": The shape of an <u>entire event</u> "Individual topology": The shape of a single particle

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の < 29/30</p>

Global topology, size, brightness, and direction *directly* couple to hit pattern.

"Global Topology": The shape of an <u>entire event</u> "Individual topology": The shape of a <u>single particle</u> Disclaimer: not *really* individual since particle themselves decay/re-interact into other particles.

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の < 29/30</p>

Procedure

What affects global topology?

Product particle types

Product particle energies

Product particle directions

・ロト <
回 ト <
三 ト <
三 ト <
三 ・ つ へ C
30/30
</p>