NMH chain Ev	vent sampling	vs Swim	Asymmetry	Outlook

NMH sensitivity

Bruno Strandberg

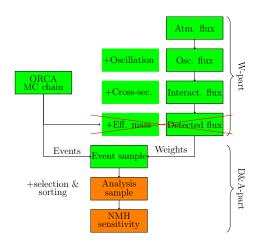
Nikhef KM3NeT

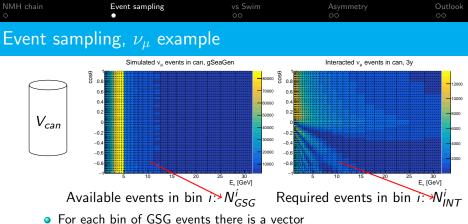
May 30, 2018

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

NMH chain	Event sampling	vs Swim	Asymmetry	Outlook
O	0	00	00	00
Outline				

2 Event sampling





NMH chain	Event sampling	vs Swim	Asymmetry	Outlook
●	0	00	00	00
NMH chain				

 $gSeaGen \rightarrow KM3Sim \rightarrow JTE \rightarrow Reco \rightarrow selection + PID \rightarrow Summary file$ interacted "effective mass" detected

- For each bin of GSG events there is a vector vector<evtid>(evtid₁, ..., evtid_{Nⁱ_{cSG}})
- Sample Poisson(N_{INT}^{i}) events from the vector.
- Lookup which of the sampled gSeaGen events made it to the end of the MC chain.

 $sampling \xrightarrow{\text{loss of events}} 0.03 \text{ Summary file}$

NMH chain	Event sampling	vs Swim	Asymmetry	Outlook
0	0	●○	00	00
c ·				

vs Swim

All reconstructed events per bin in class [showers], 3y yx projection All reconstructed events per bin in class [tracks], 3y yx projection 0.0 × 0.0 × 0.2 × 0.0 × 0.2 × ° 0.0 800 cosθ −0.2 120 200 100 150 -0.4 -0.4 80 60 100 -0.6 -0.6 40 - 50 -0.8 -0.8 20 -1.0-1.010² 5 6 7 8 10 20 30 40 3 20 30 40 10² 3 4 4 567810 Reco E (GeV) Reco E [GeV] Reconstructed tracks, 3v Reconstructed showers, 3y cos0 reco cos0 reco - 250 140 _0 -0 1 -0. _0 120 -0.4 -0.4 -0.5 -0. 150 -0.6 -0.6 100 -0.7 -0.1 -0.8 -0. -0.9 -0 9 10 E_v reco [GeV] 10 $\mathsf{E}_v \; \mathsf{reco} \; [\mathsf{GeV}]^{10^2}$

- Swim plots from https://elog.km3net.de/Analysis/255.
- As expected, similar event patterns.

NMH chain	Event sampling	vs Swim	Asymmetry	Outlook
O	O	⊙●	00	00
<u> </u>				

vs Swim

Evt type	Int. [/y/MTon]	Rec. [3y]	Evt type	Int. [/y/MTon]	Rec. [3y]
Tracks	8106.9	68495.6	Tracks	8394.5	64674.0
$ u_{\mu} $	5727.9		ν_{μ}	5904.8	
$ar{ u}_{\mu}$	2379.0		$ar{ u}_{\mu}$	2489.7	
Showers	15696.5	125222.7	Showers	15648.6	147507.0
$ u_e$ cc	4785.3		$ u_e \operatorname{cc} $	4836.4	
$ar{ u}_e$ cc	1684.7		$\bar{ u}_e$ cc	1676.7	
$ u_{ au}$ cc	617.6		$ u_{ au}$ cc	613.1	
$ar{ u}_ au$ cc	287.0		$ar{ u}_ au$ cc	284.8	
u nc	5739.2		ν nc	5697.3	
$ar{ u}$ nc	2582.7		$ar{ u}$ nc	2540.3	

Table: Swim

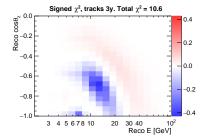
Table: Me

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

Swim has $\sim3.4\%$ less tracks at interaction level, but $\sim5.6\%$ more events after reco. Swim has $\sim15\%$ less showers. This could be:

- Bug (Liam reports \sim 120k showers, but 57k tracks).
- Different event selection.

NMH chain	Event sampling	vs Swim	Asymmetry	Outlook
O	0	00	●0	00
Asymmetry				


- Fill E vs $\cos \theta$ hists for tracks and showers for NH/IH.
- Calculate $A_i = |NH_i IH_i|(NH_i IH_i)/NH_i$ for each bin *i*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

• Calculate $A_{\sum} = \sqrt{\sum_i A_i^2}$ for tracks and showers.

NMH chain	Event sampling	vs Swim	Asymmetry	Outlook
O	O	00	⊙●	00
Asymmetry				

The problem: I get nothing like has been shown before.

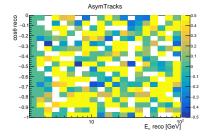
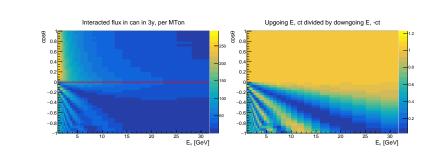


Figure: Track asymmetry in Swim.

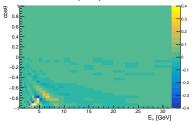
Figure: Track asymmetry in my samples.

(日)、

-


Possible causes:

- This Swim plot is based on expectation values (No Poisson smearing)?
- I am doing something wrong...


NMH chain	Event sampling	vs Swim	Asymmetry	Outlook
O	0	00	00	●0
Outlook				

- Understand the difference in asymmetry.
- Optimize event selection.
- Options to fit oscillation parameters.
- And something about systematics...

NMH chain	Event sampling	vs Swim	Asymmetry	Outlook
0	O	00	00	⊙●
Outlook				

Why?

Divide out flux scale.

・ロト ・個ト ・モト ・モト

æ

O Divide out σ .