
Neural networks for Arca

Master Project

Maarten Post

June 2018

KM3NET outing

Table of contents

1. Introduction into neural networks

2. Classification between showers, tracks and background

3. Next step: time

1

Introduction into neural networks

A network of neurons

Figure 1: The common way to represent a neural network

2

Mathematical notation

f (W ~x + ~B)

With

x input data vector

W weight matrix

B bias vector

f a non-linear ”activation” function like tanh or 1
1+e−x , that often

f : R→ (−1, 1)

Figure 2: Relu- and the Sigmoid function

3

Building a ”network”

f (W2f (W1f (W0x + B0) + B1) + B2) = y

If x has n data point W0 is a n ∗ m matrix and B0 is a m vector.

W1 is an m ∗ z matrix and B1 a z vector, ect.

f can be a different function each layer.

y is the output vector

4

Outputs

For classification one-hot encoding is common. Some activation

functions normalise the output.

ŷ =


νe
νµ
40K

...

µatmos

 =


0

1

0
...

0

 y =


0.11

.8

0
...

.09


Where ŷ is the true label and y the output of the neural network. The

label with the highest output is chosen.

5

Outputs

For regression / fitting the activation function of the last layer is left out

so the output is continue. It is possible to predict one ore more values.

For example.

ŷ =


E

dx

dy

dz

 =


10GeV

0

0

−1

 y =


8GeV

.1

.1

.8



6

Cost function

The outputs are compared with each other with a cost function. This

cost should be minimised by training. Common cost functions are square

error- and cross entropy function.

C (y , ŷ) =
∑
i

(yi − ŷi)
2 C (y , ŷ) = −

∑
i

ŷi log(yi)

7

Training

Update the weights proportional to the gradient of the cost function.

~W = ~W − α∇C (~W)

Where ∇C are the derivatives of C with respect to all matrix elements of

the weights and biases. This is calculated with the chain-rule and means

that all the activation functions should have a derivative.

8

Computer vision

Figure 3: A Cat on different places in the picture. 1978 by 1330 pixels, total

of 2.6 × 106 pixels

9

Convolutional neural network

Too much weights needed to be computational efficient.

Picture shifted by one pixel can give total different output.

Convolutional networks are introduced to solve this problem and to take

advantage of translation symetry.

Figure 4: Convolutional neural network for classifing animals on pictures

10

Convolution

(Filter ∗ Picture with rabbit) = new picture


a b c

d e f

g h i

 ∗


1 2 3 . . .

4 5 6

7 8 9
...

. . .


 [1, 1]

=

(i ·1)+(h ·2)+(g ·3)+(f ·4)+(e ·5)+(d ·6)+(c ·7)+(b ·8)+(a ·9)+B

11

Max pooling

Figure 5: The max pooling of a matrix

12

From pictures to particle physics

Figure 6: Rabbit and a electron neutrino

13

Classification between showers,

tracks and background

Arca

Figure 7: Top view of arca. meters

14

Arca

Figure 8: Matrix representation of Arca. Top view. index

15

Arca

Figure 9: Matrix representation of Arca with padding. Top view. index

16

Events

Figure 10: High energy shower and track (5 × 106 GeV). Time integrated over

∼12000 ns

17

K40

Figure 11: Only K40. Time integrated over 12000 ns

18

KM3NNET

input 13, 13, 18, 1 event matrix

Layer 1

35 filters of 6, 6, 6

Activation function Relu and max pooling

output 7, 7, 9, 35

Layer 2

60 filters of 3, 3, 3

Relu and max pooling

output 4, 4, 5, 60

Layer 3

15 filters of 2, 2, 2

Relu and max pooling

output 2, 2, 3, 15

reshape to 180 vector

19

Layer 4

Normal neural network layer of 180 by 1028 matrix

Activation function Sigmoid

Layer 5

Normal neural network layer of 1028 by 60 matrix

Sigmoid

Layer 6

Normal neural network layer of 60 by 3 matrix

Activation function Softmax

output 3 vector ”probability distribution for the classes”

Costfunction is cross entropy

20

Confusion matrix

Figure 12: Confusion matrix

21

Energy

Figure 13: Energy distribution of classified events

22

Number of hits

Figure 14: Number of monte carlo hits distribution of classified events

23

Next step: time

LSTM Network

LSTM Cell stands for Long short term memory cell and are often used for

sequential data like text but can also be used for pictures. Output

becomes input.

Figure 15: Simple LSTM network

Next time the mathematics, let’s use them first.

24

Time slices

Layer 7

Break events up in time slices and use each slide as input for

KM3NNET. Then take the outputs as inputs for a LSTM network.

Shower

Track

K40

25

https://www.youtube.com/watch?v=kiQIGd9XOnY
https://www.youtube.com/watch?v=u3aLpTjsmPQ
https://www.youtube.com/watch?v=XnOVJCUmvXM&

	Introduction into neural networks
	Classification between showers, tracks and background
	Next step: time

