KM3Net Outing 01/06/2018



#### Alfonso Garcia





- High energy neutrinos come from two different sources.
  - O Cosmic rays interactions in the Earth -> BACKGROUND
  - O Extraterrestrial sources -> SIGNAL





- Background should be isotropic.
- Signal should cluster in a particular region of the sky.
  - O Reconstruct the direction of the incoming neutrino.





- Background should be isotropic.
- Signal should cluster in a particular region of the sky.
  - O Reconstruct the direction of the incoming neutrino.





- Need other variables to discriminate between SIGNAL & BACKGROUND.
  - O Reconstruct the energy of the incoming neutrino.
  - O Very handy for SHOWERS because they are contained in the detector.





• Reconstructing energy and direction we obtain some discrimination power.







• Both Track & Shower events are used to state how good is our telescope.





• Both Track & Shower events are used to state how good is our telescope.



## Where is cross section playing a role??

#### Cross section.

- It tells us how likely an interaction is going to happen at different energies..
- It affects to the rate of events, thus the effective area.





#### Cross section.

- It tells us how likely an interaction is going to happen at different energies..
- It affects to the rate of events, thus the effective area.



 $v_{\mu}$  cross section Aeff  $\mathcal{C}\mathcal{O}(\mathbf{E})$ 

## Differential Cross section.

- It tells us the energy of the outgoing lepton and shower.
- It affects to the energy reconstruction.
  - NN trained with simulated neutrino interactions -> very model dependent!!!
    - Tracks -> How much energy is given to the muon?
    - Shower (NC) -> How much energy is given to the neutrino?

# $E_{rec} \propto d\sigma/dy$





### Differential Cross section.

## $E_{rec} \propto d\sigma/dy$





## Quark content:

- It affects to the energy reconstruction.
  - O Neural network trained with simulated neutrino interactions -> very model dependent!!!
- It tells us the ID of the outgoing hadrons.
  - O Current simulations only take into account light quark mesons (K, $\pi$ ) in the final state.
  - O At high energies, more exotic mesons (B,D) can contribute.
    - They will immediately decay into leptons? other hadrons?



### Quark content:

## $E_{rec} \propto \sigma(q)$

#### $\mathbf{E} = \mathbf{10^6} \; \mathbf{GeV}$

| Quark | I c e C u b e | КМЗЛЕТ |
|-------|---------------|--------|
| u     | 14 %          | 15 %   |
| d     | 43 %          | 48 %   |
| С     | 8 %           | 10 %   |
| S     | 23 %          | 25 %   |
| b     | 10 %          | 1 %    |

