

LOW-ENERGY PRECISION MEASUREMENTS

ELECTRON-EDM

Steven Hoekstra

electron-EDM program leader Van Swinderen Institute for Particle Physics and Gravity University of Groningen

THE ELECTRON-EDM PROGRAM

Low-energy precision measurements:

- Key contribution of Van Swinderen Institute for Particle Physics and Gravity within Nikhef
- University of Groningen joined Nikhef in 2016

Measuring the electron's electric dipole moment (eEDM):

- NWO funded program 2017-2023
- University of Groningen (RUG), Vrije Universiteit Amsterdam (VU) • 7 staff, 7 PhD students, 2 postdocs
- Many master (1yr) and bachelor (3mo) students
- Building on existing expertise and infrastructure

Ва

THE ELECTRIC DIPOLE MOMENT

Electron-EDM

- EDM arises from T-violating interactions with heavy particles in SM extensions
- A clean probe for new physics
 - EDM heavily suppressed in the Standard Model
- Current EDM sensitivity probes up to 30 TeV
 - Multihiggs, supersymmetry, leptoquarks, ...

SPIN

TABLE-TOP PARTICLE PHYSICS

Exploit the extreme precision of atomic and molecular physics • We can measure mHz shift (10⁻¹⁸ eV) of energy levels

Chose sensitive system and optimise techniques • Use the electron in a heavy polar molecule: BaF • 10⁶ sensitivity enhancement through E-field inside polar molecule Exploit long interaction times for increased sensitivity

Ba

ва

LONG INTERACTION TIME

Principle of measurement: Ramsey interferometer

- Create superposition state, accumulate phase difference, readout
- Sensitivity to small energy shift scales with coherent interaction time
- Therefore, use slow (30 m/s) and cold (100 μ K) beam of molecules

Ba

OUR APPROACH

Combine state-of-the-art techniques from AMO physics:

- Cryogenic buffergas molecular beam source
- Stark deceleration
- Molecular laser cooling
- Magnetic field shielding

CURRENT STATUS

Low-energy precision measurements: the electron-EDM program

Nik]

CURRENT STATUS

CONCLUSION

Low-energy precision measurements

- Searching for new physics through a measurement of the electron-EDM with cold molecules
- Table-top particle physics with a potential for high impact
- Research program on track, first publications coming out

