Sub-topologies in ORCA ν-events
Overview

Projected outcomes

- Tool to analyse ORCA events without ν-interaction priors
- Probe for ν_{e}-CC and ν_{τ}-CC events
- Improved reconstruction in energy and direction

Motivation

Motivation

The Global Topology Models

Motivation

- track-like: $\mu\left(\nu_{\mu}\right.$-CC, muonic ν_{τ}-CC)
- shower-like: no μ (ν-NC, ν_{e}-CC, other ν_{τ}-CC)
- KM3NeT

Motivation

$$
\begin{aligned}
& \text { The Global Topology Models } \\
& \text { W:IIDOHETOPOOGYMOD:IS, } \\
& \text { windowe }
\end{aligned}
$$

Motivation

Complaints:

- NC, elec-CC, low E μ-CC, most τ-CC all look similar.
- Fluctuations from interaction dominate.
- Tenuous information about the Bjorken-Y.
- Interaction model dependent.

Motivation

Other event topologies at high energies

[^0]
Motivation

Established work

- Study of high energy Double Bang events, Double Pulse, Sugar Daddy, etc. (IceCube and ARCA)
- Topological features used to train neural networks. (KM3NeT)
- Other... ? (I don't know about all of the literature)

Motivation

What can we find at lower energies?
 ORCA energies

Motivation

There is more going on inside!

Can we find more signatures?

New signatures

Why we think there are new signatures: particles look more distinct at lower energies!

- Particles re-interact less
- Particles re-interact into more common (and different) channels
- Decays become more visible

New signatures
Why we think we can do this:

New signatures
Why we think we can do this:

1. ORCA is dense
(Detect finer features)

New signatures
Why we think we can do this:

1. ORCA is dense
(Detect finer features)
2. KM3NeT has multidirectional DOMs
(Additional dimensions in phase space)

New signatures

Why we think we can do this:

1. ORCA is dense
(Detect finer features)
2. KM3NeT has multidirectional DOMs
(Additional dimensions in phase space)
3. Events propagate in water
(Straighter light path)

New signatures

Why we think we can do this:

1. ORCA is dense
(Detect finer features)
2. KM3NeT has multidirectional DOMs
(Additional dimensions in phase space)
3. Events propagate in water
(Straighter light path)
4. Our detection modules look super cool

Finding new signatures

Use ORCA 1-100GeV ν-interaction samples

Finding new signatures

Chain of simulation:
Input $\nu \rightarrow$ GENIE interaction \rightarrow Km3Sim propagation \rightarrow JTE PMT response + trigger

Finding new signatures

Chain of simulation:
 Input $\nu \rightarrow$ GENIE interaction \rightarrow Km3Sim propagation \rightarrow JTE PMT response + trigger

We wanted to be independent from GENIE to test it.

Finding new signatures

Global Topology \rightarrow Sub-Topology Start with $\nu \rightarrow$ Start with Product E scaling \rightarrow E as free parameter

Previous work

Primary neutrino Global topology

Simulators GENIE, KM3Sim, JTE
Parameters

$$
\begin{aligned}
& \mathrm{R}, \cos (\alpha), \theta, \phi, \mathrm{dt} \\
& (\mathrm{E} \propto \text { shower size })
\end{aligned}
$$

Starting point

This work

Proton, neutron, electron, etc. Individual topology

KM3Sim, JTE

E, R, $\cos (\alpha), \theta, \phi, d t$ E free

Description

Novelty in this work in the context of ORCA:

- Topology of individual product particles
- Energy as free parameter

Description

1. Inject one particle into ORCA
2. KM3Sim propagates particle in the detector volume, creates Cherenkov photons, absorbs and propagates photons
3. JTE simulates PMT response
4. JTE triggers signal (this step could be skipped)
5. Make PDF of number of photo-electrons at arrival time
6. Sort PDFs according to $E_{\text {particle, }} r_{v e r t e x}, \cos \left(\alpha_{v e r t e x}\right), \theta_{p m t}$, $\phi_{p m t}$.

Arrival time PDFs

Arrival time PDFs

Arrival time PDFs

Arrival time PDFs

NPE yield

NPE yield

NPE yield

NPE yield

NPE yield

No bias from simulation of primary interaction
We can describe an event without knowing anything about ν-interactions

So what?

Prescriptive reconstruction
Bulk reconstruction

Reliant on ν interaction model

Partially descriptive reconstruction
Segmented reconstruction Additional reconstruction
Probes ν interaction model

Primary bias independent

- Segmented reconstruction

Example: we could probe only a leptonic cascade, or only a hadronic cascade say something about the Bjorken-y

Prescriptive reconstruction
Bulk reconstruction

Reliant on ν interaction model

Partially descriptive reconstruction
Segmented reconstruction Additional reconstruction
Probes ν interaction model

Primary bias independent

- Segmented reconstruction
- (partially) Independent reconstruction Example: reconstructing from global topology vs. reconstructing from individual topology will give two different results that can be compared

Prescriptive reconstruction
Bulk reconstruction

Reliant on ν interaction model

Partially descriptive reconstruction
Segmented reconstruction Additional reconstruction
Probes ν interaction model

Primary bias independent

- Segmented reconstruction
- (partially) Independent reconstruction
- Probe quality of neutrino-interaction models Example: relation between EM shower and Hadronic shower consistently different in direction/energy from what interaction model predicts

Looking forward next couple of months

Next step

PDFs and CDFs are in hand for all common particles.
Caveats: only one PMT direction, hi-E muon not to be trusted.
Consider using events before triggering

Next step

- Likelihood analyses
- EM vs. Hadr shower
- EM + Hadr vs. Hadr shower
- Lepton + Hadr vs. Hadr shower
- Reconstruction of Hadr in track-events
- Reconstruction of Hadr and EM in shower
- Ideas... ?

Thank you for listening and for hosting me!
Inputs, suggestions, questions?

Leftovers..

Motivation

Orca Energy resolution

[^1]
Motivation

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$
\begin{array}{r}
P_{3 \nu} m\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \cos ^{2} \theta_{13}^{m} \sin ^{2}\left(\frac{A L}{4}+\frac{\left.\Delta m_{31}^{2}+\Delta^{m} m^{2}\right) L}{8 E_{\nu}}\right) \tag{1}\\
- \text { someotherterms }
\end{array}
$$

Motivation

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$
\begin{array}{r}
P_{3 \nu} m\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \cos ^{2} \theta_{13}^{m} \sin ^{2}\left(\frac{A L}{4}+\frac{\left.\Delta m_{31}^{2}+\Delta^{m} m^{2}\right) L}{8 E_{\nu}}\right) \tag{1}\\
- \text { someotherterms }
\end{array}
$$

Motivation

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$
\begin{array}{r}
P_{3 \nu} m\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \cos ^{2} \theta_{13}^{m} \sin ^{2}\left(\frac{A L}{4}+\frac{\left.\Delta m_{31}^{2}+\Delta^{m} m^{2}\right) L}{8 E_{\nu}}\right) \tag{1}\\
- \text { someotherterms }
\end{array}
$$

Motivation

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$
\begin{array}{r}
P_{3 \nu} m\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \cos ^{2} \theta_{13}^{m} \sin ^{2}\left(\frac{A L}{4}+\frac{\left.\Delta m_{31}^{2}+\Delta^{m} m^{2}\right) L}{8 E_{\nu}}\right) \tag{1}\\
- \text { someotherterms }
\end{array}
$$

Motivation

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- The number of electrons in the neutrino's path
- Energy of the neutrino
- Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$
\begin{array}{r}
P_{3 \nu} m\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \simeq 1-\sin ^{2} 2 \theta_{23} \cos ^{2} \theta_{13}^{m} \sin ^{2}\left(\frac{A L}{4}+\frac{\left.\Delta m_{31}^{2}+\Delta^{m} m^{2}\right) L}{8 E_{\nu}}\right) \tag{1}\\
- \text { someotherterms }
\end{array}
$$

Motivation: number of electrons in path Requires knowledge of the following:

- The matter density of the Earth
- The distance travelled through the Earth

Motivation: number of electrons in path Requires knowledge of the following:

- The matter density of the Earth
- The distance travelled through the Earth

Motivation: number of electrons in path

Requires knowledge of the following:

- The matter density of the Earth
- The distance travelled through the Earth
- \rightarrow known by neutrino direction

Figure: Parametrization of electrons in path using the Earth

Motivation: neutrino flavor

The flavor of a neutrino is defined by the interaction it induces.

- Type of product particles
- Energies and directions of product particles

Motivation: neutrino flavor

The flavor of a neutrino is defined by the interaction it induces.

- Type of product particles
- Energies and directions of product particles

Motivation: neutrino energy

The neutrino energy affects the following outcomes:

- The size of the event in the detector (PMT positions)
- The number of $\gamma_{\text {cherenkov }}$

Finding new signatures

> Chain of simulation:
> Input $\nu \rightarrow$ GENIE interaction \rightarrow Km3Sim propagation \rightarrow JTE PMT response + trigger

We wanted to be independent from GENIE.

Finding new signatures

Signatures are visible in the detector hit pattern.
What affects the hit pattern?

Finding new signatures

Global topology, size, brightness, and direction directly couple to hit pattern.

Finding new signatures

Global topology, size, brightness, and direction directly couple to hit pattern.
"Global Topology": The shape of an entire event vS.
"Individual topology": The shape of a single particle

Finding new signatures

Global topology, size, brightness, and direction directly couple to hit pattern.
"Global Topology": The shape of an entire event vS.
"Individual topology": The shape of a single particle
Disclaimer: not really individual since particle themselves decay/re-interact into other particles.

Finding new signatures

What affects global topology?

Product particle types

Product particle energies

Product particle directions

[^0]: ${ }^{2}$ D. Cowen. Tau Neutrinos in IceCube. Internal IceCuberReport, June

[^1]: ${ }^{4}$ KM3NeT Phase II LOI

