Sub-topologies in ORCA u-events

Jordan Seneca May 3, 2018

<**□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ の**へで 2/48

Projected outcomes

 \blacktriangleright Tool to analyse ORCA events without u-interaction priors

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 3/48

- Probe for u_e -CC and $u_{ au}$ -CC events
- Improved reconstruction in energy and direction

・ロト <
同 ト <
言 ト <
言 ト 、
言 の へ
の 4/48
</p>

The Global Topology Models

< □ ▶ < @ ▶ < E ▶ < E ▶ E のへで 5/48

- track-like: μ (u_{μ} -CC, muonic u_{τ} -CC)
- ▶ shower-like: no μ (ν -NC, ν_e -CC, other ν_{τ} -CC)

The Global Topology Models WELL DONE TOPOLOGY MODELS. WELL DONE

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ のへで 7/48

Complaints:

<□ > < @ > < E > < E > E の < 0 < 8/48</p>

- ▶ NC, elec-CC, low E μ -CC, most τ -CC all look similar.
- Fluctuations from interaction dominate.
- ► Tenuous information about the Bjorken-Y.
- Interaction model dependent.

Other event topologies at high energies

²D. Cowen. Tau Neutrinos in IceCube. Internal IceCube Report, June 📱 🤊 ৭. 🕫 🧃

Established work

 Study of high energy Double Bang events, Double Pulse, Sugar Daddy, etc. (IceCube and ARCA)

- Topological features used to train neural networks. (KM3NeT)
- Other... ? (I don't know about all of the literature)

What can we find at lower energies?

ORCA energies

³D. Cowen. Tau Neutrinos in IceCube. Internal IceCube Report, June 📱 🔊 ৭ ৫ 💷

Can we find more signatures?

◆□▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の Q @ 13/48</p>

Why we think there are new signatures: particles look more **distinct** at lower energies!

- Particles re-interact less
- Particles re-interact into more common (and different) channels

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ の Q @ 14/48

Decays become more visible

Why we think **we** can do this:

◆□▶ ◆昼▶ ◆ 差▶ ◆ 差▶ 差 の Q ℃ 15/48

Why we think **we** can do this:

1. ORCA is dense

(Detect finer features)

Why we think **we** can do this:

1. ORCA is dense

(Detect finer features)

2. KM3NeT has multidirectional DOMs

(Additional dimensions in phase space)

Why we think **we** can do this:

1. ORCA is dense

(Detect finer features)

2. **KM3NeT has multidirectional DOMs** (Additional dimensions in phase space)

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ⑦ Q @ 15/48

3. Events propagate in water (Straighter light path)

Why we think **we** can do this:

1. ORCA is dense

(Detect finer features)

2. **KM3NeT has multidirectional DOMs** (Additional dimensions in phase space)

- 3. Events propagate in water (Straighter light path)
- $4. \quad \text{Our detection modules look super cool} \\$

Use ORCA 1-100GeV ν -interaction samples

▲□▶ ▲□▶ ▲ ミ ▶ ▲ ミ ▶ ● ミ ⑦ Q @ 16/48

Chain of simulation: Input $\nu \rightarrow$ GENIE interaction \rightarrow Km3Sim propagation \rightarrow JTE PMT response + trigger

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ● ● ● 17/48

Chain of simulation: Input $\nu \rightarrow$ GENIE interaction \rightarrow Km3Sim propagation \rightarrow JTE PMT response + trigger

We wanted to be independent from GENIE to test it.

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへぐ 19/48

Global Topology \rightarrow Sub-Topology Start with $\nu \rightarrow$ Start with Product E scaling \rightarrow E as free parameter

Description

	Previous work	This work
Starting point	Primary neutrino <u>Global</u> topology	Proton, neutron, electron, etc. Individual topology
Simulators	<u>GENIE</u> , KM3Sim, JTE	KM3Sim, JTE
Parameters	R, $\cos(\alpha)$, θ , ϕ , dt (E \propto shower size)	\underline{E} , R, $\cos(\alpha)$, $ heta$, ϕ , dt E free

Novelty in this work in the context of ORCA:

< □ ▶ < **□ ▶** < **ミ ▶** < **ミ ▶** < **ミ** の < [©] 22/48

- Topology of individual product particles
- ► Energy as free parameter

Description

- 1. Inject one particle into ORCA
- 2. KM3Sim propagates particle in the detector volume, creates Cherenkov photons, absorbs and propagates photons
- 3. JTE simulates PMT response
- 4. JTE triggers signal (this step could be skipped)
- 5. Make PDF of number of photo-electrons at arrival time
- 6. Sort PDFs according to $E_{particle}$, r_{vertex} , $\cos(\alpha_{vertex})$, θ_{pmt} , ϕ_{pmt} .

・ロト <
同 ト <
ミト <
ミト 、
ミ の へ の 24/48
</p>

No bias from simulation of primary interaction We can describe an event without knowing anything about u-interactions

So what?

<□ ▶ < @ ▶ < E ▶ < E ▶ ○ 29/48

Description

Prescriptive reconstruction

Bulk reconstruction

Reliant on u interaction model

Partially descriptive reconstruction

Segmented reconstruction Additional reconstruction Probes ν interaction model

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ E の < @ 30/48

Primary bias independent

 Segmented reconstruction
 Example: we could probe only a leptonic cascade, or only a hadronic cascade say something about the Bjorken-y

Description

Prescriptive reconstruction

Bulk reconstruction

Reliant on u interaction model

Partially descriptive reconstruction

Segmented reconstruction Additional reconstruction Probes ν interaction model

< □ ▶ < **□ ▶** < **ミ ▶** < **ミ ▶** < **ミ** の < [⊙] 32/48

Primary bias independent

- Segmented reconstruction
- (partially) Independent reconstruction Example: reconstructing from global topology vs. reconstructing from individual topology will give two different results that can be compared

Description

Prescriptive reconstruction

Bulk reconstruction

Reliant on u interaction model

Partially descriptive reconstruction

Segmented reconstruction Additional reconstruction Probes ν interaction model

・ロト <
同 ト <
ミト <
ミト 、
ミ の へ の 34/48
</p>

Primary bias independent

- Segmented reconstruction
- ► (partially) Independent reconstruction
- Probe quality of neutrino-interaction models Example: relation between EM shower and Hadronic shower consistently different in direction/energy from what interaction model predicts

Looking forward next couple of months

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○ 36/48</p>

PDFs and CDFs are in hand for all common particles. Caveats: only one PMT direction, hi-E muon not to be trusted.

Consider using events before triggering

Next step

- Likelihood analyses
- EM vs. Hadr shower
- ▶ EM + Hadr vs. Hadr shower
- ▶ Lepton + Hadr vs. Hadr shower
- Reconstruction of Hadr in track-events
- Reconstruction of Hadr and EM in shower

・ロト <
同 ト <
ミト <
ミト 、
ミ の へ の 38/48
</p>

► Ideas... ?

Thank you for listening and for hosting me!

Inputs, suggestions, questions?

Leftovers..

Orca Energy resolution

4

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- ► The number of electrons in the neutrino's path
- Energy of the neutrino
- ► Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$P_{3\nu}m(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13}^m \sin^2 \left(\frac{AL}{4} + \frac{\Delta m_{31}^2 + \Delta^m m^2)L}{8E_{\nu}}\right)$$

-some other terms

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- ► The number of electrons in the neutrino's path
- Energy of the neutrino
- ► Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$P_{3\nu}m(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13}^m \sin^2 \left(\frac{AL}{4} + \frac{\Delta m_{31}^2 + \Delta^m m^2)L}{8E_{\nu}}\right)$$

-some other terms

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- ► The number of electrons in the neutrino's path
- Energy of the neutrino
- ► Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$P_{3\nu}m(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13}^m \sin^2 \left(\frac{AL}{4} + \frac{\Delta m_{31}^2 + \Delta^m m^2)L}{8E_{\nu}}\right)$$

-some other terms

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- ► The number of electrons in the neutrino's path
- Energy of the neutrino
- ► Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$P_{3\nu}m(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13}^m \sin^2 \left(\frac{AL}{4} + \frac{\Delta m_{31}^2 + \Delta^m m^2)L}{8E_{\nu}}\right)$$

-some other terms

Here are the parameters necessary to accurately predict the oscillation probability of a neutrino through matter.

- Oscillation parameters
- ► The number of electrons in the neutrino's path
- Energy of the neutrino
- ► Flavor of the neutrino
- Neutrino Mass Ordering (NMO)

$$P_{3\nu}m(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13}^m \sin^2 \left(\frac{AL}{4} + \frac{\Delta m_{31}^2 + \Delta^m m^2)L}{8E_{\nu}}\right)$$

-some other terms

Motivation: number of electrons in path Requires knowledge of the following:

- ► The matter density of the Earth
- ► The distance travelled through the Earth

Motivation: number of electrons in path Requires knowledge of the following:

- ► The matter density of the Earth
- ► The distance travelled through the Earth

Motivation: number of electrons in path Requires knowledge of the following:

- ▶ The matter density of the Earth
- ► The distance travelled through the Earth
 - \blacktriangleright \rightarrow known by neutrino direction

Figure: Parametrization of electrons in path using the Earth

Motivation: neutrino flavor

The flavor of a neutrino is defined by the interaction it induces.

Type of product particles

Energies and directions of product particles

Motivation: neutrino flavor

The flavor of a neutrino is defined by the interaction it induces.

- Type of product particles
- Energies and directions of product particles

Motivation: neutrino energy

The neutrino energy affects the following outcomes:

► The size of the event in the detector (PMT positions)

・ロト・日本 = ・ ・ = ・ = の へ e 45/48

• The number of $\gamma_{cherenkov}$

Chain of simulation: Input $\nu \rightarrow$ GENIE interaction \rightarrow Km3Sim propagation \rightarrow JTE PMT response + trigger

We wanted to be independent from GENIE.

・ロト <
同 ト <
ミト <
ミト ミ の へ で 46/48
</p>

Signatures are visible in the detector hit pattern.

What affects the hit pattern?

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ Q ○ 47/48</p>

Global topology, size, brightness, and direction *directly* couple to hit pattern.

Global topology, size, brightness, and direction *directly* couple to hit pattern.

"Global Topology": The shape of an <u>entire event</u> "Individual topology": The shape of a single particle

Global topology, size, brightness, and direction *directly* couple to hit pattern.

"Global Topology": The shape of an <u>entire event</u> "Individual topology": The shape of a <u>single particle</u> Disclaimer: not *really* individual since particle themselves decay/re-interact into other particles.

・ロト <
同 ト <
三 ト <
三 ・ うへや 48/48
</p>

What affects global topology?

Product particle types Product particle energies

Product particle directions

・ロト <
同 ト <
言 ト <
言 ト 、
言 の へ の 49/48
</p>