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Prediction of Antimatter

Paul A. M. Dirac

1928 Publishes his equation
of motion for the electron

1931 Predicts the existence
of the positron
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Discovery of the Positron

Carl D. Anderson, 1932

Studying cosmic particles with a bubble chamber

Particles would lose energy in lead
barrier, allowing the charge to
be determined

Found a light, positively
charged particle
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Antimatter as Rocket Fuel

In the year 2151?

No!
Highest production of p: 1011 per hour (1.67× 10−13 g/h)
Would take 5 years to boil 1L of water.
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Reasons for Studying Antimatter

Antimatter allows for direct tests of fundamental symmetries and
may hold clues to some of the biggest unanswered questions in
physics:

Why is there no antimatter in the Universe (Baryon
asymmetry)

Is CPT symmetry conserved?

Does the weak equivalence principle hold for antimatter?
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Baryon Asymmetry

Observations show no evidence for large scale antimatter in
the Universe

No satisfactory explanation, consistent with experiment, has
been given

One of the main unanswered questions in physics and a
shortcoming of the Standard Model
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CPT Symmetry

Combination of the Charge conjugation, Parity inversion, and
Time reversal symmetries

C, P, and CP are each broken in the standard model

No process has been observed to break CPT symmetry

CPT symmetry is proven to hold in any quantum field theory
which:

Is Lorentz invariant
Is local
Has a Hermitian Hamiltonian
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Antimatter gravity: The Weak Equivalence Principle

In Einstein’s general relativity, any body must experience the same
acceleration in the gravitational field, regardless of its composition

This is expected to hold true for antimatter, but a direct,
model-independent test has not been made
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1S-2S Spectroscopy

The 1S-2S transition frequency in hydrogen is one of the most
precisely measured numbers in physics:

f1S−2S = 2 466 061 413 187 035 (10) Hz

Comparing this value with its equivalent in antihydrogen is one of
the most appealing and conceptually simple matter / antimatter
comparisons, and is one of the main motivations for doing cold
antimatter physics.
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AD
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The AD Experiments

6 experiments share the beam from the Antiproton Decelerator

All are built to compare matter to antimatter at low energy
and with high precision

This is the only place in the world that low energy antimatter
can be studied
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The ALPHA Experiment

Antihydrogen Laser PHysics Apparatus

2002 (ATHENA) Production of H

2010 First trapping of H

2011 First resonant transitions

2016 First laser-driven transition
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Typical Mixing Numbers

90,000 antiprotons

3 million positrons

50,000 antihydrogen atoms produced

∼ 20 trapped

We can now accumulate trapped antihydrogen from many mixing
cycles
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The ALPHA Experiment
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Laser System
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150mW from laser

1W circulating in cavity



Hydrogen 1S and 2S Hyperfine Structure
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Experimental Procedure

Trap antihydrogen from two mixing cycles (about 20 atoms)

Clear out any remaining charged particles

300s hold time at d-d frequency

300s hold time at c-c frequency

Ramp down magnets to detect remaining atoms

3 types of trials:

On resonance

Off resonance

No laser

11 repetitions of each type were conducted
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Simulation

Simulate the response of ordinary hydrogen in the ALPHA trap
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Data: Disappearance mode

Count the atoms left in the trap after the laser exposure.
On- and off- resonance differ by 92 ± 15 counts

Type Detected events Background Uncertainty

Off-resonance 159 0.7 13
On-resonance 67 0.7 8.2

No laser 142 0.7 12

Detector efficiency here is 0.688
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Data: Appearance mode

Look for annihilations during the 300s hold times

Type Detected events Background Uncertainty

d-d off resonance 15 14.2 3.9
d-d on resonance 39 14.2 6.2

No laser 22 14.2 4.7
c-c off resonance 12 14.2 3.5
c-c on resonance 40 14.2 6.3

No laser 8 14.2 2.8

total off resonance 27 28.4 5.2
total on resonance 79 28.4 8.9

total No laser 30 28.4 5.5

Detector efficiency here is 0.376
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Data: Appearance mode

Look for annihilations during the 300s hold times

Type Detected events Background Uncertainty

d-d off resonance 15 14.2 3.9
d-d on resonance 39 14.2 6.2

No laser 22 14.2 4.7
c-c off resonance 12 14.2 3.5
c-c on resonance 40 14.2 6.3

No laser 8 14.2 2.8

total off resonance 27 28.4 5.2
total on resonance 79 28.4 8.9

total No laser 30 28.4 5.5
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2016 Result
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2017 Result
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Drive only the d-d transition
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Experimental Procedure

Trap antihydrogen from three mixing cycles (about 40 atoms)

Clear out any remaining charged particles

300s laser exposure at fixed frequency near d-d transition

32s microwave sweep to eject c-state atoms

Ramp down magnets to detect remaining atoms

Interspersed trials of 4 different laser frequencies in a
frequency ’set’

4 sets of 4 frequencies completed over 10 weeks

0 kHz and -200 kHz detuning included in every set

+25 kHz repeated as another check of reproducibility

9 unique laser frequencies used on ∼ 15 000 atoms
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2017 Result
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Analysis Strategy

Fit the data with an appropriate function, derived from
simulations.

Compare to the simulation of ordinary hydrogen

BUT!

The absolute laser power in the experiment is difficult to
measure.

The laser powers in different sets are unlikely to be identical
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Effect of Laser Power
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Analysis Strategy

Parameterize the fitting function in terms of laser power and
make this the fit parameter

Perform the fit with one laser power per set and a single
frequency offset from the hydrogen simulation
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Result

The line shape is in good agreement with the hydrogen
calculation

The center frequency is determined to a fractional precision of
about 2× 10−12 and is in agreement with the hydrogen
calculation

This is currently the best ”antimatter clock”
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Ground State Hyperfine Spectroscopy

Flip the spin of the positron to expel atoms from the trap
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Microwave Spectroscopy in Antihydrogen

Two transitions with constant separation, independent of magnetic
field

GSHF splitting = 1, 420.4± 0.5 MHz
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Microwave Spectroscopy in Antihydrogen

Two transitions with constant separation, independent of magnetic
field

GSHF splitting = 1, 420.4± 0.5 MHz
Improvements to come!
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CPT Tests and relative precision
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CPT Tests on an Energy Scale

Comparing the sensitivity to absolute energy differences of various
CPT tests
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Understanding the Line Shape

Shifts and broadening effects calculated assuming 1W of
circulating laser power and typical trap parameters

Effect Approximate Size

1st order Doppler cancels
2nd order Doppler 80 Hz
Transition time 160 kHz
AC Stark 5 kHz
DC Stark 150 Hz
Magnetic shift d-d (c-c) 96 Hz/G (1.9 kHz/G)
Ionisation width 4 kHz
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Future Improvements

The main contributions to the line width are:

Transit time broadening

Depletion effects

Reduction of linewidth to be gained through:

Increasing the laser beam size

Cooling the H (Laser cooling or adiabatic expansion)

Operating at low depletion
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Future Improvements
Expansion of laser beam size:
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Future Improvements

New measurement strategies:

Measure at low magnetic field

Measure at several laser powers (extract AC stark shift)

Measure at several temperatures (extract 2nd order Doppler)

None of these are unthinkable!
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Thank you
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1S-2S Transition in Hydrogen

f1S−2S = 2 466 061 413 187 035 (10) Hz

Measured with a cold hydrogen beam

Hänsch et al. 2011
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Table of uncertainties
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Data Table
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Cosmic Event Rejection

Cosmic discrimination based on event topology
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Antiproton Discrimination

Annihilation distributions inconsistent with charged antiprotons
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Charge Neutrality of Antihydrogen

1 Apply stochastically varying
electric fields to the trapped
antihydrogen

2 If antihydrogen is charged, it
can be accelerated out of
the magnetic trap by the
stochastic fields

3 From the surviving atoms,
deduce a limit on the charge
of the antihydrogen atom

|Q| < 0.71× 10−9 e
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Antimatter Gravity Technique 2013

Comparing data to simulations with
different strengths of gravity using
reverse, cumulative averages

We rule out F > 110 and F < −60,
where

F ≡ Mg

M
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