z-resolution in a TPC with a pixel readout

C. Ligtenberg, P.M. Kluit, Y. Bilevych, K. Desch, H. van der Graaf, F. Hartjes, K. Heijhoff, J. Kaminski, G. Raven, T. Schiffer, J. Timmermans

LCTPC Analysis meeting

May 18, 2018

Nik]hef

Outline

(1) z-resolution in single chip detector
(2) z-resolution in the ILD TPC
(3) Time stamping resolution of TPC tracks in ILD

Single chip Timepix3-based GridPix detector

Timepix3-based GridPix:

- Micro-pattern gaseous detector with grid aligned to pixels
- $65 \mathrm{~K} 55 \mu \mathrm{~m} \times 55 \mu \mathrm{~m}$ sized pixels

Timepix3 compared to its predecessor:

- Improved time resolution of 1.56 ns
- Simultaneous time and charge (ToT) measurement
Single chip Timepix3 detector with field shaping, guard electrode, and T2K TPC gas (Ar:CF ${ }_{4}: \mathrm{iC}_{4} \mathrm{H}_{10}$ 95:3:2)

Test beam measurements

- Test beam using 2.5 GeV electrons at the ELSA facility (Bonn)
- Tracks are reconstructed by simple linear regression
- Drift field is $280 \mathrm{~V} / \mathrm{cm}$
- $v_{\text {drift }}=78.86(1) \mu \mathrm{m} / \mathrm{ns}$ from Magboltz

Time walk correction

Time walk error is caused by ToA depending on signal magnitude This can be corrected using

$$
\begin{equation*}
z_{\mathrm{tw}}=\frac{c_{1}}{t_{\mathrm{T}_{\mathrm{oT}}}+t_{0}} \tag{1}
\end{equation*}
$$

z-resolution

Resolution σ_{z} determined by longitudinal diffusion coefficient D_{L} and resolution at zero drift distance $\sigma_{z 0}: \sigma_{z}^{2}=\sigma_{z 0}^{2}+D_{L}^{2}\left(z-z_{0}\right)$

Measured $D_{L}=226 \mu \mathrm{~m} / \sqrt{\mathrm{cm}}$ (Magboltz predicts 201(5) $\mu \mathrm{m} / \sqrt{\mathrm{cm}}$) and $\sigma_{z 0}=139 \mu \mathrm{~m}(168 \mu \mathrm{~m}$ if including ToT $<0.60 \mu \mathrm{~s})$

ToT error is propagated to z-resolution

ToT error $\sigma_{T o T}=k_{0}+k_{1}\left(t_{T o T}+t_{0}\right)$ causes error in z-position through time walk correction.
Fit $\sigma_{z 0}^{2}=\sigma_{\text {ToT }}^{2}+\sigma_{0}^{2}$ for slices in ToT of width $0.05 \mu \mathrm{~s}$

Fix c_{1} and t_{0} from time walk and fit k_{0}, k_{1} and σ_{0}

Contributions to z-resolution

Contributions at zero drift distance

Time resolution: $\tau v_{\text {drift }} / \sqrt{12}$	$34 \mu \mathrm{~m}$
Systematics of the chip from a histogram	$47 \mu \mathrm{~m}$
Uncertainty in track position	$30 \mu \mathrm{~m}$
Fluctuations in ToT	
($117 \mu \mathrm{~m}$ for asymptotically high ToT)	$154 \mu \mathrm{~m}$
Total $\sigma_{z 0}$	$168 \mu \mathrm{~m}$

Simulation of ILD TPC with pixel readout

- Pixel geometry is implemented in ILD DD4hep simulation (Geant4)
- Simulated in layers of $\sim 990 \mu \mathrm{~m}$ over which to track is interpolated to $55 \mu \mathrm{~m}$ pixels
- An energy deposit is converted to a hit if above 27 eV (Our tune)
- Hits are smeared with hit-resolution
- $\sigma_{z}=\sqrt{\sigma_{z 0}^{2}+D_{z}^{2} z_{\text {drift }}}$
- From test beam: $\sigma_{z 0}=0.168 \mathrm{~mm}$
- From Magboltz: $D_{L}=205 \mu \mathrm{~m} / \sqrt{\mathrm{cm}}$ (test beam $D_{L}=226 \mu \mathrm{~m} / \sqrt{\mathrm{cm}}$)
- Tracks are reconstructed with a Kalman filter

NikThef

Contributions to the z-resolution

- Uncertainty from position measurement

$$
\begin{equation*}
\sigma_{\mathrm{me}}^{2}=\frac{\sigma_{z}^{2}}{\sqrt{N}} \propto \frac{\sigma_{z}^{2}}{\sqrt{L_{\text {track }}}} \tag{2}
\end{equation*}
$$

- Uncertainty from weighted measurement of angle

$$
\begin{equation*}
\frac{1}{\sigma_{\mathrm{ms}}^{2}} \propto \frac{1}{\sigma_{0}^{2}}+\frac{p^{2}}{\sigma_{1}^{2} L^{3}} \Rightarrow \sigma_{\mathrm{ms}}^{2} \propto \frac{1}{1 / \sigma_{0}^{2}+p^{2} /\left(\sigma_{1}^{2} L^{3}\right)} \tag{3}
\end{equation*}
$$

where the first term captures the measurement error and the second term the multiple scattering

Equations under the assumption of constant hit errors (diffusion is missing)

Resolution as a function of angle

for muons

Resolution as a function of angle

for muons

Parameters are set to $\sigma_{z}=64 \mu \mathrm{~m}, \sigma_{0}=76 \mu \mathrm{~m}, \sigma_{1}=87 \mu \mathrm{~m}(\mathrm{GeV} / \mathrm{c})^{-1} \underset{\text { Nik hef }}{-3}$

Resolution as a function of momentum

for muons

z-resolution as a function of momentum

for muons

Parameters are set to $\sigma_{z}=64 \mu \mathrm{~m}, \sigma_{0}=76 \mu \mathrm{~m}, \sigma_{1}=87 \mu \mathrm{~m}(\mathrm{GeV} / \mathrm{c})^{-1} \underset{\text { Nik hef }}{-3}$

$\operatorname{Cot}(\theta)$ resolution

for muons

$\cot (\theta)=\tan (\lambda)$

z-resolution in the ILD TPC with pixel readout

At inner radius At outer radius

50 GeV muons at 85°	$50 \mu \mathrm{~m}$	$50 \mu \mathrm{~m}$
50 GeV muons at 25°	$13 \mu \mathrm{~m}$	$35 \mu \mathrm{~m}$
2 GeV muons at 85°	$75 \mu \mathrm{~m}$	$75 \mu \mathrm{~m}$
2 GeV muons at 25°	$25 \mu \mathrm{~m}$	$85 \mu \mathrm{~m}$
	Without systematics errors	

If instead of the Magboltz value of $D_{L}=205 \mu \mathrm{~m} / \sqrt{\mathrm{cm}}$ the diffusion coefficient $D_{L}=226 \mu \mathrm{~m} / \sqrt{\mathrm{cm}}$ from the test beam setup is used, σ_{z} is approximately 10% greater: e.g. $\sigma_{z}=55 \mu \mathrm{~m}$ for 50 GeV muons at 85°

Time stamping of TPC tracks in ILD

Tracks are time stamped by comparing their absolute z-position from the silicon trackers with the z-position determined from the drift time measurement in the TPC

The Silicon Internal Tracker (SIT) and the Silicon External Tracker (SET) will be build from respectively 2 and 1 layers of the same double strip planes with a $\sigma_{z}=50 \mu \mathrm{~m}$ resolution. So the SIT and SET resolution is approximately $50 / \sqrt{2} \mu \mathrm{~m}=35 \mu \mathrm{~m}$ and $50 \mu \mathrm{~m}$ respectively

The precision of the silicon trackers and hit resolution put stringent requirements on the relative precision of the drift velocity. In a study for the CLIC ILD detector the relative precision from electric field, temperature and pressure was estimated to be $7 \cdot 10^{-6}$, corresponding to $16 \mu \mathrm{~m}^{1}$

[^0]
Time stamping of TPC tracks in ILD

Assuming uncertainties of $16 \mu \mathrm{~m}$ from the drift velocity, $35 \mu \mathrm{~m}$ from the SIT, and $50 \mu \mathrm{~m}$ from the SET.
Multiple scattering from inner and outer TPC field was neglected

Time stamping of TPC tracks in ILD

If the SIT is instrumented with Silicon pixels instead of Silicon strips, the time resolution can be improved

Assuming an uncertainty of $15 \mu \mathrm{~m}$ from the SIT

Conclusion

- From test beam measurements sources of position errors in the z-direction are identified
- The uncertainty in a single chip Gridpix detector is given by $\sigma_{z}=\sqrt{\sigma_{z 0}^{2}+D_{L}^{2} z}$, where $\sigma_{z 0}=168 \mu \mathrm{~m}$ and $D_{L}=226 \mu \mathrm{~m} / \sqrt{\mathrm{cm}}$
- The z-resolution of the ILD TPC with pixel readout is studied and from simulations found to be between $13 \mu \mathrm{~m}$ and $85 \mu \mathrm{~m}$
- The time stamping resolution of the ILD TPC is estimated to range from 0.65 ns to 1.2 ns

The TPC as a time of flight detector

Time difference of particles is given by

$$
\begin{equation*}
\Delta t=\frac{L c}{2 p^{2}}\left(m_{1}^{2}-m_{2}^{2}\right) \tag{4}
\end{equation*}
$$

- Time resolution does not suffice for particle identification (for a $2 \mathrm{GeV} / \mathrm{c}$ proton/kaon at traversing the ILD TPC at 45° $\Delta t=0.632 \mathrm{~ns})$
- But is useful in searches

Time walk correction

Timewalk corrected with $z_{\mathrm{tw}}=\frac{c_{1}}{t_{\mathrm{ToT}}+t_{0}}$
The error in the ToT should be propagated to the z-coordinate: $\sigma_{z}^{2}=\left(\sigma_{z 0}\left(t_{\text {ToT }}\right)\right)^{2}+D_{L}^{2}\left(z-z_{0}\right)$

Propagation of ToT error to σ_{z}

Propagate error:

$$
\begin{equation*}
\sigma_{z 0}\left(t_{T o T}\right)=\sigma_{T o T} \frac{\partial z_{t w}}{\partial t_{T_{o} T}} \tag{5}
\end{equation*}
$$

Derivative is:

$$
\begin{equation*}
\frac{\partial z_{t w}}{\partial t_{T_{o} T}}=-c_{1}\left(t_{T o T}+t_{0}\right)^{-2} \tag{6}
\end{equation*}
$$

Assume:

$$
\begin{equation*}
\sigma_{T o T}=k_{0}+k_{1}\left(t_{T o T}+t_{0}\right) \tag{7}
\end{equation*}
$$

Full error becomes:

$$
\begin{equation*}
\sigma_{z}\left(t_{T_{o} T}\right)=\sqrt{\frac{\left(k_{0}+k_{1}\left(t_{T o T}+t_{0}\right)\right)^{2} c_{1}^{2}}{\left(t_{T_{o} T}+t_{0}\right)^{4}}+\sigma_{0}^{2}} \tag{8}
\end{equation*}
$$

[^0]: ${ }^{1}$ Martin Killenberg, Time Stamping of TPC Tracks in the CLIC ILD Detector, NikThef LCD-Note-2011-030

