Group meeting 08/03/2018

v cross sections at high energies

Alfonso Garcia

GENIE:

• Try to understand how it computes the cross section.

$$\begin{split} \frac{d\sigma^{\nu,\bar{\nu}}}{dxdy} &= \frac{G_F^2 M E_{\nu}}{\pi} \bigg[y \bigg(xy + \frac{m_l^2}{2E_{\nu}M} \bigg) F_1 \\ &+ \bigg(1 - y - \frac{M xy}{2E_{\nu}} - \frac{m_l^2}{4E_{\nu}^2} \bigg) F_2 \\ &\pm \bigg[xy \bigg(1 - \frac{y}{2} \bigg) - y \frac{m_l^2}{4M E_{\nu}} \bigg] F_3 \\ &+ \bigg(xy \frac{m_l^2}{2M E_{\nu}} + \frac{m_l^4}{4M^2 E_{\nu}^2} \bigg) F_4 - \frac{m_l^2}{2M E_{\nu}} F_5 \bigg], \end{split}$$

 $< \mathbf{M}_{charm}$ $F_2^{CC}(\nu p) = 2x[d\cos^2\theta_c + s\sin^2\theta_c + \bar{u}],$ $xF_3^{CC}(\nu p) = 2x[d\cos^2\theta_c + s\sin^2\theta_c - \bar{u}]$ $\mathbf{q} = \mathbf{q}(\mathbf{x}, \mathbf{Q}^2)$

> m_{charm} [Slow rescaling]
$$z = x + \frac{m_c^2}{m_p(E_\nu - E_l)}$$

 $F_2^{CC}(\nu p) = 2z[d+s+\overline{u}],$
 $xF_3^{CC}(\nu p) = 2z[d+s-\overline{u}],$
 $q = q(z,Q^2)$

GENIE:

• Try to understand how it computes the cross section.

$$\begin{split} \frac{d\sigma^{\nu,\bar{\nu}}}{dxdy} &= \frac{G_F^2 M E_{\nu}}{\pi} \bigg[y \bigg(xy + \frac{m_l^2}{2E_{\nu}M} \bigg) F_1 \\ &+ \bigg(1 - y - \frac{Mxy}{2E_{\nu}} - \frac{m_l^2}{4E_{\nu}^2} \bigg) F_2 \\ &\pm \bigg[xy \bigg(1 - \frac{y}{2} \bigg) - y \frac{m_l^2}{4ME_{\nu}} \bigg] F_3 \\ &+ \bigg(xy \frac{m_l^2}{2ME_{\nu}} + \frac{m_l^4}{4M^2E_{\nu}^2} \bigg) F_4 - \frac{m_l^2}{2ME_{\nu}} F_5 \bigg], \end{split}$$

< Mcharm $F_2^{CC}(\nu p) = 2x[d\cos^2\theta_c + s\sin^2\theta_c + \bar{u} + \bar{c}],$ $xF_3^{CC}(\nu p) = 2x[d\cos^2\theta_c + s\sin^2\theta_c - \bar{u} - \bar{c}]$ $q = q(x,Q^2)$

> m_{charm} [Slow rescaling]
$$z = x + \frac{m_c^2}{m_p(E_\nu - E_l)}$$

 $F_2^{CC}(\nu p) = 2z[d+s+\bar{u}+\bar{c}],$ $xF_3^{CC}(\nu p) = 2z[d+s-\bar{u}-\bar{c}],$

 $q = q(z,Q^2)$

GENIE: ν_{μ} cross section ơ/E_v [10⁻³⁸cm²/GeV/nucleon] ΓĦ Gandhi98 10⁻² **GENIE 2.12.6** GENIE 2.12.6 + charm 10^{-3} 10³ 10⁸ $\mathsf{E}_{v} [\mathsf{GeV}^{10^9}]$ 10⁵ 10⁶ 10⁷ 10⁴

GENIE:

