Group meeting 22/02/2018

v cross sections at high energies

Alfonso Garcia

Cross Section in KM3Net/ARCA:

• Three main processes have to be taken into account.

Generators marktet:

	GENIE	NuWro	GiBUU	ANIS	LEPTO
XSEC	LO PDF: GRV98 LO	LO PDF: GRV98 LO	PYTHIA (LO) PDF: CTEQ4	Cooper-Sakar (NLO) PDF: HERA1.5	LO PDF: CTEQ6
HADRON.	PYTHIA6	PYTHIA6 (tuned)	PYTHIA6	Hadronic energy is written out as pions	PYTHIA6
FSI	CASCADE	CASCADE	Transport model	NO	?
Comments	DIS optimised for low Q ² Limited up to 5 TeV	DIS optimised for low Q ²	FSI treatment is very consistent (slow) Limited up to 1 TeV	Design for HE neutrinos	Design for HE neutrinos

KM3NeT

Generators marktet:

- I've been able to install and run GiBUU and GENIE.
- Currently try to increases their energy range.
- I want also to include Aart's cross section in the plots.

Theory:

• DIS cross section is "easy" to compute at LO (assuming mass of lepton zero and isoscalar target).

$$\frac{d^2\sigma}{dxdy} = \frac{2G_F^2 M E_\nu}{\pi} \left(\frac{M_W^2}{Q^2 + M_W^2}\right)^2 \left[xq(x,Q^2) + x\overline{q}(x,Q^2)(1-y)^2\right]$$

$$\begin{split} q(x,Q^2) &= \frac{u_v(x,Q^2) + d_v(x,Q^2)}{2} + \frac{u_s(x,Q^2) + d_s(x,Q^2)}{2} \\ &+ s_s(x,Q^2) + b_s(x,Q^2) \\ \hline \overline{q}(x,Q^2) &= \frac{u_s(x,Q^2) + d_s(x,Q^2)}{2} + c_s(x,Q^2) + t_s(x,Q^2), \end{split}$$

Theory:

• A group of theoreticians from NIKHEF want to provide us "state of the art" cross sections.

