Group Meeting 25-01-2018

E.L. de Waardt

Recap

- Observed difference between number of muons from different CR primaries for the same energy and zenith angle.

-Observed difference in number of muons for different zenith angles.

-Observed difference between the density of muons in a muonbundle over R, for different energies and different primaries. Fe, p and He primaries with $cos(\theta)$ between 0.9-1

Recap

- Observed difference between number of muons from different CR primaries for the same energy and zenith angle.

-Observed difference in number of muons for different zenith angles.

-Observed difference between the density of muons in a muonbundle over R, for different energies and different primaries.

Ratio's

Recap

- Observed difference between number of muons from different CR primaries for the same energy and zenith angle.

-Observed difference in number of muons for different zenith angles.

-Observed difference between the density of muons in a muon bundle over R, for different energies and different primaries.

Ratio between Fe primary and other primaries

p and Fe for EPOS, SIBYLL and QGSJETII

Different hadronic interaction models with zenith angle: $0.95 < \cos(\theta) < 1$

EPOS vs. SIBYLL vs. QGSJET II at the top of can

EPOS vs SIBYLL vs QGSJETII, proton primary under different zenith angles

Different hadronic interaction models with zenith angle: $0.95 < \cos(\theta) < 1$

Multiplicity distribution at top of can Proton primary

Energy of proton primary vs. max radius of muon from primary axis

Maximum radius (m)

EPOS p, 8 <= log(Ep) < 8.5

SIBYLL p, $8 \le \log(Ep) \le 8.5$

QGSJETII p, 8 <= log(Ep) < 8.5

EPOS p, 8 <= log(Ep) < 8.5

SIBYLL p, 8 <= log(Ep) < 8.5

12

Explanation procedure

Detector level

bundles and single muon track from proton primary

14

Investigation for scintillators at sea

- Cooperate with HISPARC
- Working on QGSJET II 04
- Trying to get information of the total energy of the shower