

Integrated, scalable spectral sensors

A. Fiore, <u>Ž. Zobenica</u>, R.W. van der Heijden, T. Liu, M. Petruzzella, F. Pagliano, F.W.M. van Otten *Institute for Photonic Integration Eindhoven University of Technology*

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

Our dream

Replace this:

With this:

Microspectrometer

- Bulky
- Expensive (1'000-10'000 EUR)
- High-performance
- General purpose
- Single-pixel

- Integrated
- Cheap (10-100 EUR)
- High-performance
- Dedicated to specific application
- Arrays

Fechnische Universiteit **Eindhoven** University of Technology

How to integrate a spectrometer

the linewidth)

Technische Universiteit **Eindhoven** University of Technology

Key functionalities:

- 1) Filtering
- 2) Actuation
- 3) Detection

Filtering with photonic crystal cavities

- Very high Q factor possible (up to 10⁶)
- Small Volume ~ $\lambda^3 \rightarrow$ Large free spectral range possible
- Light mass (~ 10 picograms) → high speed

Cavity actuation

Double-membrane structures: Change *effective index*

Electrostatic actuation:

Nanomechanical cavities

Experimental tuning range: 20-30 nm

Integrated microspectrometer

Microspectrometers: Results

Present devices offer high resolution (100 pm) but low spectral range (20 nm)

Our next goal: Microspectrometer with 0.5-1 nm resolution, 200 nm spectral range in the 1500-2000 nm region

Applications:

- Mobile healthcare (monitoring of glucose, triglycerides, ...)
- Gas sensing
- etc

Notes:

- Light source and spectrometer can be integrated and fitted in a smartphone
- Imaging arrays can be fabricated
- Concept can be extended to other types of optical detectors

PSN: Nano-opto-electro-mechanical systems

Electromechanically-tuneable photonic crystal cavity:

NOEMS: Application as microspectrometers

HF absorption line (16 pm):

- Can measure emission or absorption lines
- Resolution down to 100 fm/(Hz)^{0.5}

• Fully-integrated, mass-manufacturable

Patent filed

Double-membrane photonic crystal

- Modes hybridize and form supermodes
- Changing separation tunes the supermodes
- Electrostatic actuation via p-i-n junction

23 nm tuning of monopole mode in H0 cavity:

ersity of Technology

3) Detection

Concept: Detector + Tuneable Filter

Fabricated structure

Sensing: Modes of operation

Spectrometer action (tuneable filter):

- Changing Voltage changes $\boldsymbol{\lambda}$
- Incoming light read as photocurrent

- **Displacement** transduced as a small change in photocurrent

μ-spectrometer demonstration

- Resolution ~ 150 pm
- Responsivity changes due to changing field overlap with QDs

Rignal and an internation of the station of the state of

Demonstration of background suppression

Additional advantage: Higher wavelength resolution on a single line

Ue Technische Universitei Eindhoven University of Technolog

 $d\lambda$

Application of microspectrometer in gas sensing

- P(3) line: 1312.591 nm
- 16 pm linewidth, 6 dB depth (at 50 Torr pressure)
- Use of resonance modulation scheme is crucial!

1318 nm

Gas sensing: Measurements

Excitation: SLED + HF cell + filter (1310 nm)

Detection: cavity mode sweeping

HF absorption line P(3) @ 1312.59 nm detected

Displacement sensor demonstration

Measuring thermal motion:

Estimated amplitude of thermal motion:

 $z_{RMS} \approx 20 \ pm \ (@RT)$

Displacement sensor demonstration

✓ µ-spectrometer with resolution down to 80 pm over a range of up to 23 nm

- Resonance modulation scheme with high rejection ratio (30dB) and resolution (<1 pm when used as a wavemeter)
- ✓ Application as gas sensor (HF detection)
- ✓ Fully integrated optomechanical displacement sensor

All this in an integrated device, few tens of μ m in size, suitable for mass production

Questions?

Tuning: pull-in limitation

Tuning is limited by pull-in effect to 2/3 of nominal distance

M.Cotrufo

(Li) (1600 (Li) (

Simulation: Tuning from d = 240nm to 160nm provides: $\Delta \lambda = 28 \text{ nm}$

Pull-in effect is not reversible

Experimental:
$$\langle x^2 \rangle_{th} = \int S_{xx} df = (6.3 \ pm)^2$$

Model: $k_B T / m_{eff} \Omega_M^2 = (22 \ pm)^2$

- Transduction currently limited
- by diode speed ($f_{cut-off} < f_1$)
- To be addressed: Non-ohmic contacts

Displacement PSD:

$$S_{xx}(f) = \frac{P_{out}(f)}{Z A g_{OM}^2 \left(\frac{\partial I}{\partial \omega}\right)^2}$$

$$g_{OM} = \frac{\partial \omega}{\partial x} = 2 \cdot 10^{20} \ s^{-1}/m$$

Mode distribution in an asymmetric system

Surface under the curve vs. laser power

Pull-in

Tuning is limited by pull-in effect to 2/3 of nominal distance

Electrostatic

Simulation: Tuning from d = 240nm to 160nm provides: $\Delta \lambda$ =28 nm

- > Tuning range ($\Delta\lambda$) > 50 nm
- Resolution ($\delta\lambda$) < 100 pm
- Free spectral range (FSR) > 50 nm
- \blacktriangleright Responsivity = 0.05 A/W
- Rejection ration > 15 dB

- \rightarrow (7nm extended to 25 nm)
- \rightarrow (76 pm)
- \rightarrow (up to 30 nm for H0 cavity)
- \rightarrow (up to 0.02 A/W)
- \rightarrow (30 dB)

Fabrication of full devices:

Double membrane device with an 10µm L3 modified cavity	n

Double membrane device with highlighted contact pads

* M. Petruzzella

- Over 50 fabrication steps:
- Multiple wet and dry etching steps
- 3 Optical lithography steps (for defining contact pad positions)
- Metal evaporation
- Electron beam lithography (for patterning the photonic crystal)

