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The basic, explicit, calculation

needed to generate the scattering matrix, relating all possible out-states
to all possible in-states.

Keep all assumptions to an absolute minimum, and use instead the
known laws of physics . . .

Apart from the most basic assumption of unitary evolution,
this is nothing more than applying GR and quantum mechanics

By using spherical harmonics, we shall find that this S-matrix
factorises into expressions that require nothing but the solutions of
1 dimensional partial diff. equations

Of course there will be questions left open for discussion
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Schwarzschild metric:

ds2 = −dt2
(

1− 2GM

r

)
+

dr2

1− 2GM/r
+ r2dΩ2 ;

dΩ2 ≡ dθ2 + sin2 θdϕ2 .

r

V(r)

0

central horizon
singularity r = 2GM
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The tortoise coordinates

Kruskal-Szekeres coordinates x , y , defined by

x y =
( r

2GM
− 1
)
er/2GM

y/x = et/2GM

In these coordinates, the metric stays regular at the horizon
(r → 2GM). x and y are light cone coordinates.

r 
=
 2
G

M

IV

III

II I

For the outside observer,
time stands still at the
horizon
(the origin of this
diagram)
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The Einstein - Rosen bridge

II I
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distant

time

local time

III

x

y

x    y−

τ

x(τ) = x(0)e−τ

y(τ) = y(0)eτ

As time τ = t/4GM
goes forwards, x
approaches the horizon
asymptotically;

as time goes
backwards, y
approaches the past
horizon asymptotically
(tortoises).

If the outside observer makes a time boost, the local observer
makes a Lorentz transformation.
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The black hole with surrounding universe: the Penrose diagram

Consider first the black hole metric without the effects of matter –
the eternal black hole.

The Penrose diagram is a conformally compressed picture of all of
space-time:
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distant

time

local time

III

x

y

x    y−

τ

Hartle-Hawking vacuum:

|HH 〉 =

C
∑

E ,n e−
1
2βE |E , n〉I |E , n〉II

Time boost for distant observer =
Lorentz boost for local observer.

Usual interpretation:
I = outside
II = inside [ ? ] →

quantum entanglement becomes entropy:
→ a thermal state . . .

In- and out-going particles: energies E for distant observer stay small.

But for the local observer, energies of in-particles in distant past,

as well as the out-particles in distant future, rapidly tend to infinity.
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The real black hole is usually not eternal; there will be:

– imploding matter in the far past, removing region IV , and

– Hawking particles in the late future. If these are left in the
Hartle-Hawking state, they have no effect on the metric, but if we
project out any measured bass element of Fock space, this will
generate firewalls, blocking away region III .

Another way to phrase the problem:

1) If we allow large time translations, infinitely many Hawking particles
will crowd both the future and the past horizon.

2) The particles going in do not seem to affect particles going out: no
unitarity in the evolution process.

The information problem:
The black hole does not seem to respond to our messages,

and it houses infinitely many particles, with no bounds on
their energy-momentum.
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Thus, we phrase the problem in a time-reversal-invariant manner.

Important: when we wish to discuss pure quantum states, using
pure QM and GR, our system will stay time-reversal-symmetric.

We have to justify the use of the eternal Penrose diagram with
regions III and IV . This will be done a posteriori.

Actually, only the parts of III and IV infinitesimally close to the
horizons will be used.

It will be shown that the unwanted firewall particles
can be transformed away.

This will seem like a new law of physics, but it follows from careful
analysis. This transformation will form an essential new ingredient
in Qu. Gravity. It is due to

the gravitational back reaction,

the main gravitational interaction between in- and out-particles
that can be taken into account exactly.
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The gravitational effect of a fast, massless particle is easy to understand:

Schwarzschild metric of a particle with tiny rest mass m� MPlanck :

And now apply a strong Lorentz boost, so that E/c2 � MPlanck :

curvature

flat spaceflat space
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This gives us the

gravitational backreaction:

Lorentz boosting the light (or massless) particle gives the Shapiro time
delay caused by its grav. field:

δx

x

x ′

1

2

u
−

p
−

δu
−

1
2

space-time
flat

space-time
flat

δu−(x̃) = −4G p−(x̃ ′) log |x̃ − x̃ ′| .

P.C. Aichelburg and R.U. Sexl, J. Gen. Rel. Grav. 2 (1971) 303,
W.B. Bonnor, Commun. Math. Phys. 13 (1969) 163,

T. Dray and G. ’t Hooft, Nucl. Phys. B253 (1985) 173.
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Now we see what the gravitational back reaction does to the data
distribution: a given in-going particle (red line) causes all out-going
particles (colored lines) to be shifted by the same amount, δu, which only
depends on the angular variables (θ, ϕ), not on u.

 fu
tu

re
 h

or
iz

on

     past horizon

II I

IV

III
vu

Thus, the data are shifted right across the horizon. Ignoring this fact
causes confusion.
Same happens with past event horizon, by time reversal!
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Hard and soft particles

The particles populating this space-time: their energies may diverge
beyond MPlanck.

If so, we call them hard particles :
they cause shifts in the orbits of the soft particles

This effect is strong and chaotic: no observer trying to cross such
a curtain of particles can survive: firewalls

Almheiri, Marolf, Polchinski, Sully (2013)

Particles whose energies, in a given Lorentz frame, are small compared to
MPlanck will be called soft particles .

Their effects on curvature are small compared to LPlanck, and
will be ignored (or taken care of in perturbative Qu.Gravity).

During its entire history, a black hole has in-going matter (grav.
implosion) and out-going matter (Hawking).
If we want to express these in terms of pure quantum states, one might
expect firewalls both on the future and past event horizon.

(The pure quantum theory must be CPT symmetric)
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Such firewalls would form a natural boundary surrounding region I

That can’t be right

Derivation of Hawking radiation asks for analytic extension to region III

Time reversal symmetry then asks for analytic extension to region IV

In combination, you then also get region II

I

∞
+

∞

∞
−
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All this suggests that firewalls can be switched on and off:
the firewall transformation.

(1.) Note: Hawking’s wave function seems to form a single quantum
state (if we assume both regions I and II of the Penrose diagram to be
physical ! – see later). A firewall would form infinitely many quantum
states. What kind of mapping do we have? Aren’t we dealing with an
information problem here??

(2.) Region II would have its own asymptotic regions: ∞′ , ∞′+ , and
∞′−. What is their physical significance?

Wait and see . . .
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We start with only soft particles populating space-time in the
Penrose diagram.
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We now first wish to understand the evolution operator for
short time intervals only. Firewalls have no time to develop.
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The evolution law for the soft particles is fully dictated by QFT on
curved space-time.

At |τ | = O(1), particles going in, and Hawking particles going out,
are soft.

However, during our short time interval, some soft particles might
pass the borderline between soft and hard: they now interact with the
out-particles.
The interaction through QFT forces stay weak, but the
gravitational forces make that (early) in-particles interact strongly with

(late) out-particles.

Effect of gravitational force between them easy to calculate . . .
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Calculate Shapiro shift,
Every in-particle with momentum p− at solid angle Ω = (θ, ϕ)
causes a shift δu− of all out-particles at solid angles

Ω′ = (θ′, ϕ′):

δu−(Ω′) = 8πG f (Ω′,Ω)p− ; (1−∆W )f (Ω′,Ω) = δ2(Ω′,Ω) .

Many particles: p−(Ω) =
∑

i p
−
i δ

2(Ω,Ωi ) →

δu−(Ω′) = 8πG

∫
d2Ω f (Ω′,Ω)p−(Ω) .

Small modification: replace δu−out by u−out , then:

u−out(Ω) = 8πG
∫
d2Ω′f (Ω,Ω′)p−in(Ω′)

adding an in-going particle with momentum p−in, corresponds to
displacing all out-going particles by u−out as given by our equation.

All u−out are generated by all p−in .
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A mapping of the momenta p−in of the in-particles onto the

positions u−out of the out-particles. Agrees with time evolution:

p−in → p−in(0)eτ , u+in → u+in(0)e−τ ;

p+out → p+out(0)e−τ , u−out → u−out(0)eτ .

What we calculated is the footprint of in-particles onto the out-particles,
caused by gravity.

And then: δu− → u− implying that now the in-particles are to be
replaced by the out-particles. The out-particles are just footprints!

This makes sense: u− is the particle p+ in position space –
just Fourier transform the quantum state!

Footprints promoted to the status of particles themselves.
Avoids double counting: only describe the in-particle or
its footprint (the out-particle), not both, as in the older equations.

Note: hard in-particles generate soft out-particles and vice versa.

This way, replace all hard particles by soft ones.
This removes the firewalls: the firewall transformation.
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Authors of older papers, when encountering “firewalls”, did not take into
account that neither in-going nor out-going particles should be followed
for time intervals δτ with |δτ | � O(1).

This evolution law involves soft particles only. Is it unitary ?

Yes, provided only the variables p±(Ω) and u±(Ω) are involved.
No quantum numbers like baryon, lepton . . .

p±(Ω) are like vertex insertions in string theories.
Postulating that this respects unitarity makes sense . . .

First amendment on Nature’s Constitution:

A particle may be replaced by its gravitational footprint: At a
horizon, out-particles are the Fourier transforms of in-particles.

Second problem:

What is the relation between regions I and II ?
Both have asymptotic domains: two universes !
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a) Wave functions ψ(u+) of the in-particles live in region I , therefore u+ > 0.
b) Out-particles in region I have ψ(u−) with u− > 0.

0
in

u+

u−

Region I

a)

ψin (u+) ,   u+ > 0

0
out

u+

u−

Region I

b)
ψout (u−) ,   u− > 0

0
in u+

u−
Region II

c)u+ < 0

ψin (u+)

0
out

u+

u−
Region II

d)

u− < 0
ψout (u−)

The physical
picture

c, d) In region II , the in-particles have u+ < 0 and the out-particles u− < 0.
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All doubt vanishes when expanding in spherical harmonics:
Ω ≡ (θ, ϕ)

u±(Ω) =
∑
`,m

u`mY`m(Ω) , p±(Ω) =
∑
`,m

p±`mY`m(Ω) ;

[u±(Ω), p∓(Ω′)] = iδ2(Ω, Ω′) , [u±`m, p
∓
`′m′ ] = iδ``′δmm′ ;

u−out =
8πG

`2 + `+ 1
p−in , u+in = − 8πG

`2 + `+ 1
p+out ,

p±`m = total momentum in of out
in -particles in (`,m)-wave ,

u±`m = (`,m)-component of c.m. position of in
out-particles .

Factorisation: because we have linear equations, all different `,m
waves decouple, and for one (`,m)-mode we have just the variables
u± and p±. They represent only one independent coordinate u+,
with p− = −i∂/∂u+.
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Great advantage of the expansion in spherical harmonics:

At every (`, m), we get a single wave function in 1 space- and
1 time coordinate, and we can see that it evolves in a unitary way.

All we need to do is regard the positions u and the momenta p as
canonical operators as always in QM. As soon as we replace the
momenta p of the hard particles, by the shifted positions u of the
soft particles, we get rid of the firewalls, and we see unitary
evolution.

The in-particles can now be replaced by their footprints in the
out-particles. The Fourier transform is unitary !
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The in-particles never get the opportunity to become truly hard
particles.

Like a “soft wall”-boundary condition near the origin of the
Penrose diagram. Wave functions going in reflect as wave
functions going out. Soft in-particles emerge as soft out-particles.

No firewall, ever.

The total of the in-particles in regions I and II are transformed
(basically just a Fourier transform) into out-particles in the same
two regions.

Regions III and IV are best to be seen as lying somewhere on the
time-line where time t is somewhere beyond infinity
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The antipodal identification
Sanchez(1986), Whiting(1987)

Regions I and II of the Penrose diagram are exact copies of one another.
Does region II represent the “inside” of the black hole?
NO! There are asymptotic regions. Region I is carbon copy of region II .

We must assume that region II describes the same black hole as region I .
It represents some other part of the same black hole. Which other part?
The local geometry stays the same, while the square of this O(3)
operator must be the identity.

Search for A ∈ O(3) such that : A2 = I , and
Ax = x has no real solutions for x .

⇒ All eigenvalues of A must be −1. Therefore: A = −I:
the antipodal mapping.
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We stumbled upon a new restriction for all general coordinate
transformations:

Amendment # 2 for Nature’s Constitution”

For a curved space-time background to be used to describe a
region in the universe, one must demand that every point on
our space-time region represent exactly one point in a single
universe

(not two, as in analytically extended Schwarzschild metric)

The emergence of this non-trivial topology needs not be completely
absurd, as long as no signals can be sent around. We think that this is
the case at hand here.

It is the absence of singularities in the physical domain of space-time that
we must demand.

Note that, now, ` has to be odd !
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II I

32 / 40



II I
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Black emptiness: blue regions are
the accessible part of space-time;
dotted lines indicate identification.

The white sphere within is not
part of space-time. Call it a
‘vacuole’.

At given time t, the black hole is a 3-dimensional vacuole. The entire life
cycle of a black hole is a vacuole in 4-d Minkowski space-time: an
instanton

N.Gaddam, O.Papadoulaki, P.Betzios (Utrecht)

Space coordinates change sign at the identified points
– and also time changes sign
(Note: time stands still at the horizon itself).

34 / 40



Next step: introduce the tortoise coordinates.
Let there be two operators, u and p, obeying the commutator equation

[u, p] = i , so that 〈u|p〉 = 1√
2π
e ipu .

Split both u and p in a positive part and a negative part:

u ≡ σu e%u , p = σp e
%p ; σu = ±1 , σp = ±1 , and

ψ̃σu (%u) ≡ e
1
2%u ψ(σu e

%u ) , ˜̂
ψσp (%p) ≡ e

1
2%p ψ̂(σp e

%p ) ;

normalized: |ψ|2 =
∑
σu=±

∫ ∞
−∞

d%u|ψ̃σu (%u)|2 =
∑
σp=±

∫ ∞
−∞

d%p| ˜̂ψσp (%p)|2 .

Then ˜̂ψσp (%p) =
∑
σu=±1

∫ ∞
−∞

d%Kσuσp (%) ψ̃σu (%− %p) ,

with Kσ(%) ≡ 1√
2π
e

1
2% e−iσ e

%
.

If %p → %p + λ , then simply u → u e−λ , p → p eλ , a symmetry of
the Fourier transform. Here, it corresponds to Energy conservation.
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Use this symmetry to write plane waves:

ψ̃σu (%u) ≡ ψ̆σu (κ) e−iκ%u and ˜̂ψσp (%p) ≡ ˘̂ψσp (κ) eiκ%p with

˘̂ψσp (κ) =
∑
σp=±1

Fσuσp (κ)ψ̆σu (κ) ; Fσ(κ) ≡
∫ ∞
−∞

Kσ(%)e−iκ%d% .

Thus, we see left-going waves produce right-going waves. On finds
(just do the integral):

Fσ(κ) =

∫ ∞
0

dy

y
y

1
2−iκ e−iσy = Γ( 1

2 − iκ) e−
iσπ
4 −

π
2 κσ .

Matrix

(
F+ F−
F− F+

)
is unitary: F+F

∗
− = −F−F ∗+ and |F+|2 + |F−|2 = 1 .

Look at how our soft particle wave functions evolve with time τ

Hamiltonian is the dilaton operator (N.Gaddam, O.Papadoulaki, P.Betzios)

H = − 1
2 (u+p− + p−u+) = 1

2 (u−p+ + p+u−) =

i
∂

∂%u+

= −i ∂

∂%u−
= −i ∂

∂%p−
= i

∂

∂%p+

= κ ,
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Add the scale factor 8πG
`2+`+1 , to get, if u± = σ±e

%± ,

ψin
σ+ e
−iκ%+ → ψout

σ− eiκ%
−
, (1)

ψout
σ− =

∑
σ+

Fσ+σ−(κ) e−iκ log
(
8πG/(`2 + `+ 1)

)
ψin
σ+

These equations generate the contributions to the scattering matrix from
all (`,m) sectors of the system, where |m| ≤ `. At every (`,m), we have
a contribution to the position operators u±(θ, ϕ) and momentum
operators p±(θ, ϕ) proportional to the partial wave function Y`m(θ, ϕ).
The signs of u±(θ, ϕ) tell us whether we are in region I or region II . The
signs of p±(θ, ϕ) tell us whether we added or sutracted a particle from
region I or region II .
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A timelike Möbius strip

time

time Draw a spacelike closed curve:

Begin on the horizon at a point

r0 = 2GM , t0 = 0 , (θ0, ϕ0) .

Move to larger r values, then
travel to the antipode:

r0 = 2GM , t0 = 0 , (π − θ0, ϕ0 + π) .

You arrived at the same point, so the (space-like) curve is closed.

Now look at the environment {dx} of this curve. Continuously transport
dx around the curve. The identification at the horizon demands

dx ↔ −dx , dt ↔ −dt , .

So this is a Möbius strip, in particular in the time direction.
Note that it makes a CPT inversion when going around the loop.
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There are no direct contradictions, but take in mind that
the Hamiltonian switches sign as well.
Demanding that the external observer chooses the point where the
Hamilton density switches sign as being on the horizon, gives us a good
practical definition for the entire Hamiltonian.

Note that the soft particles near the horizon adopted the dilaton operator
as their Hamiltonian. That operator leaves regions I and II invariant.
Also, the boundary condition, our “scattering matrix”, leaves this
Hamiltonian invariant. Therefore, indeed, breaking the Hamiltonian open
exactly at the horizon still leaves the total Hamiltonian conserved. So
indeed, there are no direct contradictions.

However, this is a peculiarity that we have to take into consideration.
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More to be done. Searching for like-minded colleagues.

See: G. ’t Hooft, arxiv:1612.08640 [gr-qc] + references there;

id. Virtual Black Holes and SpaceTime Structure, Found.Phys., to be
publ,10.1007/s10701-017-0133-0, see
http://link.springer.com/article/10.1007/s10701-017-0133-0

P. Betzios, N. Gaddam and O. Papadoulaki, The Black Hole S-Matrix from

Quantum Mechanics, JHEP 1611, 131 (2016), arxiv:1607.07885.
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