KM3NeT Calibration

Karel Melis

Nikhef Jamboree (2017) – Amsterdam

The KM3NeT Detectors

- Digital Optical Module (DOM)
 - 31 x 3-inch PMTs
 - DAQ + Calibration devices
 - Hit times and time-over-threshold send to shore
- Multi-PMT design allows for photon counting on DOM level
- Detection Unit (DU)
 - 18 DOMs
 - ARCA: DOMs ~36m apart
 - ORCA: DOMs ~9m apart
- Building Block
 - 115 DUs
 - ARCA: DUs ~95m apart
 - ORCA: DUs ~ 23m apart

Intro-Motivation

Science Objectives

KM3NeT/ORCA

- Neutrino mass hierarchy
- Low-energy atmospheric neutrinos
- Median sensitivity: 3 sigma in 3 years

KM3NeT/ARCA

- Cosmic high-energy neutrino sources
- Diffuse flux
- Median sensitivity: **5 sigma in 0.5 year**

Karel Melis | Nikhef Jamboree

Motivation

- Phase one: 3 building blocks
 - 6210 DOMs
 - o 192510 PMTs
- Individual lab calibration not feasible (and inferior)
- In-situ calibration from backgrounds
 - Potassium-40 decays in sea salt
 - Atmospheric muons

Inter-PMT Time Calibration

Inter-PMT Calibration

CLB

PMT transit time (TT) distribution

PMT time offset == mean transit time

Karel Melis | Nikhef Jamboree

In-situ ⁴⁰K Calibration

- ⁴⁰K coincident light on PMT pairs in DOM
 - 31*30 coincidence distributions
 - Should all peak at zero

- Simultaneous fit of all pairs
 - Mean -> Time offsets
 - Width -> Transit time spreads
 - Integral -> Efficiencies

Check with LED Nanobeacons

40K Calibration cross-checked with LED nanobeacon data

Very good agreement between methods ($\sigma = 0.7$ ns)

Scatter (0.7 ns) expected from nanobeacon method inaccuracies

Inter-DOM Time Calibration

Calibration Sources

- Measure time delay of optical fibers
- LED Nanobeacons
 - o Controllable source
 - High luminosity: Inter-DU
 - Low luminosity: Inter-DOM
- Atmospheric muons
 - \circ High statistics
 - Permanent monitoring

LED Nanobeacons

*Work + plots by M. Jongen

- Low luminosity: Inter-DOM calibration
- High luminosity: Inter-DU calibration
- Light can be seen up to 373 meters
- Provides (with lab. laser calibration) initial calibration for data taking

Sub-ns calibration + constant monitoring with atm. muons

Hit Time Residuals (HTRs)

- HTR: Time difference between measured hit on a DOM and reconstructed track expectation

 Hit DOM excluded in fit
- Shift HTR distribution with MC
- Reconstruction changes -> repeat

Position Variations

- Acoustics network to determine DOM positions with ~10cm accuracy
- ~1m position variations due to sea currents
- Also observed with DOM's compasses

Karel Melis | Nikhef Jamboree

*Work + plots by S. Viola

Undersea Earthquake Observatory

Magnitude 3.4 Depth 10 km

PMT Efficiencies

Shower Reconstruction

Only spatial distribution of PMTs hit/not hit used in reconstruction:

.5 degree Energy resolution: ~5%

Multi-PMT Design

*Plot by A. Heijboer

- In shower reconstruction: PMT hit/not information only
- Always a sensitive set of PMTs
 - Low energy: close-by PMTs facing shower
 - High energy: distant PMTs facing away

We need to know the PMT photon detection efficiencies

Karel Melis | Nikhef Jamboree

PMT Efficiency Calibration

- In-situ (!) fit
 - Compare observed coincidence rates with expected ⁴⁰K rate
- Simultaneously fitted with PMT time offset and TTS (slide 9)

PMTs are more efficient than Hamamatsu specifications

PMT Efficiency Systematics

Calibration precise enough to see collar
PMT efficiency spread: ~6%

⁴⁰K MC – Muon MC - Data

Number of PMTs hit in coincidence (25ns) 10^{4} Rate [Hz] KM3NeT ARCA DU1+2 Preliminary Data Old MC: 40K Old MC: Atm. Muons Old MC: Total 10- 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6} 5 30 10 15 20 25 PMTs in coincidence 40k **Muons**

- Fitted PMT efficiencies are used in run-by-run atm. muon Monte Carlo
- Excellent data-MC-MC agreement over 9 (!) orders of magnitude

⁴⁰K MC – Muon MC - Data

Number of PMTs hit in coincidence (25ns)

• Fitted PMT efficiencies are used in run-by-run atm. muon Monte Carlo

Excellent data-MC-MC agreement over 9 (!) orders of magnitude

Muon Depth Dependence

- Multiplicity ≥8: Atmospheric muons
- Atm. muon rate decreases with depth
- Fluctuations due to different PMT efficiencies
- Rate is well-understood with PMT efficiencies from ⁴⁰K fit

Conclusions

Conclusions

- Precise, constant calibration + monitoring of PMT properties:
 - Sub-ns time calibration accuracy
 - PMT efficiencies fitted to percent-level (est.)
- Excellent data 40K MC atm. muon MC
 - Run-by-run simulations with fitted PMT efficiencies
- Key ingredients for neutrino source searches provided
 - (And that's exactly what I'm going to do during the last year of my PhD)

Further Reading

- KM3NeT Letter of Intent, J. Phys. G 43 (2016)
- In-Situ Calibration of KM3NeT, K. Melis, PoS(ICRC2017)1059
- All-flavour neutrino reconstruction in KM3NeT, K. Melis, A. Heijboer & M. De Jong, PoS(ICRC2017)950
- The KM3NeT acoustic positioning system, S. Viola & R. Coniglione, PoS(ICRC2017)1031
- Depth Dependence of the Atmospheric Muon Flux in KM3NeT/ARCA (in preparation)
- Characterizing the KM3NeT 3-inch Hamamatsu Photomultiplier Tube response, A. Schermer, master thesis

Transit Time Spread (TTS)

- TTS: Spread in PMT transit time
- Main factor for hit time accuracy
- In-situ fit with ⁴⁰K method (slide 9)
- Mean TTS (in-situ meas.): 1.9 ns
 - Compatible with lab measurements

DOM Time Cal. Comparison

Trigger Rate Optimization

- Triggered Event:
 - At least 5 local DOM coincidences complying with track hypothesis
- Optimal DU time offset reflects in high trigger rate
- Best fit inter-DU time offset compatible with other methods (muons and LEDs)

*Work + plots by M. Jongen

First Acoustics Data

- Single emitter
 - No fit of DOM positions
- Comparison of time-of-arrival of sound with vertical DU

Karel Melis | Nikhef Jamboree

Acoustic Network

- Piezo-based microphone in each DOM.
- Acoustic emitters on seabed
 - Sound range: 8km
- Distance emitter-DOM from triangulation of time-of-arrival measurements

Time over Threshold

- All-data-to shore principle

 Not feasible to store all PMT pulse
- Number of hit photons from pulse Time over Threshold (ToT)
- In-situ high voltage tuning of PMTs to give single photon ToT=26 ns.

Karel Melis

Nikhef Jam

*Work + plots by B. Schermer

PMT Systematics

*Work + plots by J. Reubelt & J. Hofestädt